簡易檢索 / 詳目顯示

研究生: 陳國本
Chen, Kuo-Pen
論文名稱: 單一壓電材料楔形結構之應力奇異性研究
Stress singularities in a piezoelectric wedge
指導教授: 褚晴暉
Chue, Ching-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 97
中文關鍵詞: 壓電楔形結構應力奇異性
外文關鍵詞: Piezoelectric Wedge, Stress Singularities
相關次數: 點閱:105下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用廣義的Lekhnitskii複變函數分析壓電材料在單一楔形結構下的應力奇異性。應力奇異性與材料參數、楔形角、材料的極化方向、邊界條件有關。因此本文將探討這些參數對應力奇異性的影響,以作為設計時之參考。

    由於壓電材料具有機電耦合的效應,因此邊界會包含有關彈性場與靜電場的邊界條件。本文探討十種不同的邊界條件及極化方向在x-y平面與z軸時,壓電參數對應力奇異性階數的影響,同時亦可獲得相對於奇異性消失時之最大單一楔形角度。

    This paper discusses the strength of the stress singularity orders in a piezoelectric wedge based on the generalized Lekhnitskii’s complex function. The stress singularity orders depend on the wedge angles, edge boundary conditions, material properties and poling directions.

    Due to the coupling effect of mechanical and electrical fields, the boundary conditions on the edges involve stress, displacement, electrical displacement or electric potential. This paper emphasizes the effects of piezoelectric constants and ten different boundary conditions on the singular orders when the piezoelectric material is poled in x-y plane or along z-axis. In addition, the greatest wedge angle correspond to the vanishing stress singularity can be computed.

    摘要----------------------------------------------------------------------- I 英文摘要------------------------------------------------------------------- II 誌謝----------------------------------------------------------------------- III 目錄----------------------------------------------------------------------- IV 表目錄--------------------------------------------------------------------- VI 圖目錄--------------------------------------------------------------------- VII 符號說明------------------------------------------------------------------- XII 第一章緒論----------------------------------------------------------------- 1 §1.1 前言------------------------------------------------------------- 1 §1.2 文獻回顧--------------------------------------------------------- 2 §1.3 研究方法--------------------------------------------------------- 4 §1.4 本文架構--------------------------------------------------------- 4 第二章理論分析------------------------------------------------------------- 6 §2.1 應力場與位移場--------------------------------------------------- 6 §2.2 應力奇異性階數之特徵方程式--------------------------------------- 18 §2.3 面內場與面外場之非耦合現象--------------------------------------- 24 第三章結果與討論----------------------------------------------------------- 40 §3.1 應力奇異性階數--------------------------------------------------- 41 §3.1.1 材料沿x 軸方向極化--------------------------------------- 41 §3.1.2 材料沿y 軸方向極化--------------------------------------- 42 §3.1.3 材料沿z 軸方向極化--------------------------------------- 43 §3.1.4 裂縫結構------------------------------------------------- 44 §3.2 邊界條件的影響--------------------------------------------------- 62 §3.3 極化方向的影響--------------------------------------------------- 65 §3.4 材料特性的影響--------------------------------------------------- 75 §3.5 應力奇異性消失之楔形角度----------------------------------------- 88 第四章結論----------------------------------------------------------------- 92 參考文獻------------------------------------------------------------------- 95

    [1]Tranter, C.J., The use of Mellin transform in finding the stress distribution in an infinite wedge. Quarterly Journal of Mechanics and Applied Mathematics 1 , pp. 125-130. (1948)
    [2]Williams, M.L., Stress singularities resulting from various boundary conditions in angular corners of plates in extension. Journal of Applied Mechanics 19 , pp. 526-528. (1952)
    [3]Bogy, D.B., Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. Journal Applied Mechanics 38 , pp. 377-386. (1971)
    [4]Ma, C.C. and Hour, B.L., Analysis of dissimilar anisotropic wedges subjected to antiplane shear deformation. International Journal of Solids and structures 25 , pp. 1295-1309. (1989)
    [5]Bogy, D.B., The plane solution for anisotropic elastic wedges under normal and shear loading. Journal of Applied Mechanics 39 , pp. 1101-1109. (1972)
    [6]Kuo, M.C. and Bogy, D.B., Plane solutions for the displacement and traction-displacement problems for anisotropic elastic wedges. Journal of Applied Mechanics 41 , pp. 197-202. (1974)
    [7]Kuo, M.C. and Bogy, D.B., Plane solutions for traction problems on orthotropic unsymmetrical wedges and symmetrically twinned wedges. Journal of Applied Mechanics 41 , pp. 203-208. (1974)
    [8]Delale, F., Stress singularities in bonded anisotropic materials. International Journal of Solids and structures 20 , pp. 31-40. (1984)
    [9]Lin, K.Y., and Hartmann, H.H., Numerical analysis of stress singularities at a bonded anisotrropic wedge. Engineering Fracture Mechanics 32 , pp. 211-224. (1989)
    [10]Chue C.H., Tseng C.H. and Liu C.I., On stress singularities in an anisotropic wedge for various boundary conditions. Composite Structure 54 , pp. 87-102 (2001)
    [11]Barnett, D.M. and Lothe, J., Dislocations and line charges in anisotropic piezoelectric insulators. Phyica. Status Solidi (b) 67 , pp. 105-111. (1975)
    [12]Sosa, H., Plane problems in piezoelectric media with defects. International Journal of Solids and Structures 28 , pp. 491-505. (1991)
    [13]Chen, T. and Lai D., An exact correspondence between plane piezoelectricity and generalized plane strain in elasticity. Proceeding of Royal Society London A453 , pp. 2689-2713. (1997)
    [14]Chen, T. and Yen, W.J., Piezoelectric analogy of generalized torsion in anisotropic elasticity. Journal of Elasticity 49 , pp. 239-256. (1998)
    [15]Xu, X.L. and Rajapakse, R.K.N.D., On singularities in composite piezoelectric wedges and junctions. International Journal of Solids and Structures 37 , pp. 3253-3275. (2000)
    [16]Parton, V.Z., Fracture mechanics of piezoelectric materials. Acta Astronautic 3 , pp. 65-71. (1976)
    [17]Sosa, H.A. and Pak, Y.E., Three-dimentional eigenfunction analysis of a crack in a piezoelectric material. International Journal of Solids and Structures 26 , pp. 1-15. (1990)
    [18]Kuo, C.M. and Barnett, D.M., Stress singularities of interfacial cracks in bonded piezoelectric half-spaces. In: Wu, J.J., Ting, T.C.T., Barnett, D.M.(Eds.), Modern Theory of Anisotropic Elasticity and Applications. SIAM, Philadelphia, pp. 33-50. (1991)
    [19]Shindo, Y., narita, F. and Tanaka, K., Electroelastic intensification near anti-plane shear crack in orthotropic piezoelectric ceramic strip. Theoretical and Applied Fracture Mechanics 25 , pp. 65-71. (1996)
    [20]Suo, Z., Kuo, C.M., Barnett, D.M. and Willis, J.R., Fracture mechanics for piezoelectric ceramics. Journal of the Mechanics and Physics of Solid 40 , pp. 739-765. (1992)
    [21]Lekhnitskii, S.G., Theory of elasticity of an anisotropic elasticity body. Holden-Day, New York. (1963)
    [22]Stroh, A.N., Steady state problems in anisotropic elasticity. Journal of Mathematical Physics 41 , pp. 77-103. (1962)
    [23]Chue C.H. and Chen C.D., Antiplane singularities of a bonded piezoelectric wedge. Submit to Archive of Applied Mechanics. (2002)
    [24]Berlincourt, D.A., Curran, D.R., Jaffe, H., Piezoelectric and piezoceramic materials and their function in transducers. In: Mason, W.P. (Ed.), Physical Acoustics, vol. I-A. Academic Press, New York. (1964)

    下載圖示 校內:2005-07-11公開
    校外:2005-07-11公開
    QR CODE