簡易檢索 / 詳目顯示

研究生: 賴璽文
Lai, Hsi-Wen
論文名稱: 超輕型航機結構撞擊動態損傷行為研究與防撞性能分析
Dynamic Impact Damage Response and Crashworthiness Analysis of Ultra-Light Aircraft Structures
指導教授: 鄭泗滄
Jenq, Syh-Tsang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 194
中文關鍵詞: 軸向撞擊動態撞擊分析薄管元件有限元素分析人體容忍度限制標準
外文關鍵詞: axial impac, dynamic impact analysis, thin-walled tube, FEM analysis, energy absorption, Human Tolerance Limits
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之研究目的主要在於探討由中空薄圓管件所組成的超輕型航機結構在受到撞擊時之動態損傷行為及防撞性之研究。結構防撞性的設計概念常見於各類載具結構中,如汽車與火車的結構潰縮桿、飛機機腹部的結構等等。而當一個失事案例發生時,載具結構是否有足夠的抵抗能力或吸收衝擊能量的能力一直是非常重要的研究目標。因此藉由瞭解中空薄圓管件在受軸向衝擊下的動態行為模式,探討管件遭受到撞擊時之材料受力行為、吸收能量與變形量的多寡,進而預測中空薄壁管件的變形模式。
    在理論研究方面,利用解析解求得撞擊平均力、位移及位移所需的時間與能量可產生的皺摺數目,並和實驗與模擬結果進行比較驗證。在數值模擬方面,利用商用有限元素分析軟體LS-DYNA中的顯示求解器進行薄圓管件衝擊實驗與超輕型航機失事案例之撞擊模擬,並與衝擊實驗的結果與失事案例的結構受損位置進行驗證比較。之後進一步對超輕型航機全機結構進行防撞性測試,並配合國內法規之規範,研究不同速度與管件厚度撞擊下,管件吸收能量與加速度值對人體的影響,並配合防撞設計指標中之人體容忍度限制標準,觀察及探討改變厚度的薄圓管件與造成人類脊椎傷害的關係。

    The purpose of this study is based on analyzing dynamic impact response and crashworthiness of ultra-light aircraft which is composed of hollow thin-walled tube subjected to impact. The design of structure crashworthiness concept usually appears in several of vehicle structure such as car, bumper, train, and aircraft. Besides, most and previous theses also focus on vehicle structure that possesses the resisted ability and absorb sufficient energy during the impact process. When the thin-walled tube is subjected to axial impact, the transformation mode could be predicted by studying dynamic impact response, force, energy absorption and stroke of the tube.
    On theoretical analysis view, use analytic solution to obtain mean force, stroke, duration time, energy and the collapse number. The good agreement is presented and reported for the experimental data and simulated result in our study. In addition, the explicit commercial code – LS-DYNA is utilized to solve and simulate the dynamic impact response of the hollow circular tube and the ultra-light aircraft accident. The comparison is examined for experimental result of tube and suffers injury of the accident case. By changing the impact velocity and the tube thicknesses, energy adsorptions, maximum acceleration of pilot and passenger for the Ultra-light aircraft full-scale model with deferent thicknesses of tube are represented in our simulations. The Human Tolerance Limits is adopted to describe the significant damage objective between thin-walled tube thicknesses and crush spinal damage for human.

    目次 中文摘要 英文摘要 誌謝 圖目次 I 表目次 VII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 研究目的 5 1-4 文獻回顧 6 1-4-1 結構動態撞擊行為研究 6 1-4-2 中空薄圓管件之挫曲行為研究 9 1-4-3 結構防撞性研究 13 1-5 超輕型航機載具類型及法規介紹 14 1-6 研究方法與論文大綱 16 第二章 理論背景與分析方法 22 2-1 前言 22 2-2 降伏準則 23 2-3 圓管件軸向挫曲理論 25 2-3-1 圓管靜態挫曲理論 26 2-3-2 圓管動態挫曲理論 34 2-4 結構防撞性 42 2-4-1 基礎碰撞理論 42 2-4-2 圓形薄管元件之潰縮距離與時間預測 45 2-4-3 圓形薄管元件皺摺數目形成預測 50 2-5 積分方法 52 2-5-1 顯示積分法理論介紹 52 第三章 超輕型航機載具之有限元素模型 65 3-1 超輕型航機載具結構之簡介 65 3-2 超輕型航機機翼結構之有限元素模型 66 3-2-1 機翼管件結構有限元素模型建立方法與元素選定 66 3-2-2 機翼帆布蒙皮有限元素模型建立方法與元素選定 67 3-2-3 機翼不鏽鋼繩有限元素模型建立方法與元素選定 67 3-2-4 機翼連結板及碳鋼螺絲有限元素模型建立方法與元素選定 68 3-3 超輕型航機機載具結構之有限元素模型 68 3-3-1 機載具輪胎有限元素模型建立方法與元素選定 68 3-3-2 機載具質量建立方法與元素選定 69 3-4 路面之有限元素模型 69 3-5 超輕型航機結構之各部件材料特性 70 3-6 超輕型航機結構有限元素模型之收斂性測試 70 第四章 圓管件動態數值模擬驗證 87 4-1 LS-DYNA簡介 87 4-1-1 LS-DYNA分析方法之簡介 88 4-2 圓管件受軸向撞擊之動態數值模擬驗證 89 4-2-1 有限元素模型建立方法 90 4-2-2 元素收斂性測試 91 4-2-3 動態數值模擬驗證說明 92 4-2-4 圓管尺寸、材料性質與環境設定 94 4-2-5 LS-DYNA數值模擬與文獻之實驗數據驗證 95 4-3 圓管件動態數值模擬與理論預測之驗證 97 4-3-1 定義薄圓管件之幾何外型 98 4-3-2 模擬結果比較 98 4-3-3模擬結果與理論預測結果比較 100 第五章 圓管件撞擊實驗與超輕型航機失事案例之數值模擬驗證 125 5-1 材料之拉伸與壓縮試驗 125 5-1-1 材料實驗之設備、試件及規範介紹 125 5-1-2 材料之拉伸與壓縮試驗流程 127 5-1-3 實驗結果討論 128 5-2 動態軸向撞擊試驗 128 5-2-1 軸向撞擊之實驗設備與試件介紹 128 5-2-2 軸向撞擊試驗流程 131 5-2-3 實驗結果與數值模擬驗證 132 5-3 超輕型航機QUARTZ 18 BI型機翼之撞擊驗證 133 5-3-1 QUARTZ 18 BI機翼撞擊之數值模擬驗證說明 133 5-3-2 機翼有限元素模型與分析參數設定 134 5-3-2 數值模擬結果與討論 137 第六章 超輕型航機結構之防撞性能分析 162 6-1 防撞性分析定義 162 6-2 人體容忍度(HUMAN TOLERANCE) 163 6-3 不同撞擊速度之全機結構防撞性能分析 164 6-3-1 定義超輕型航機之撞擊姿態 164 6-3-2 定義超輕型航機載重與材料特性 165 6-3-3 定義超輕型航機之撞擊速度與方向 165 6-3-4 數值模擬結果與討論 166 6-4 不同管件厚度之全機防撞性能分析 169 6-4-1定義管件厚度 169 6-4-2 數值模擬結果與討論 171 第七章 結論與未來展望 188 7-1 結論… 188 7-2 未來展望 190 參考文獻 192

    1. Huiwen Hu, Huai-En Kao, Hsun-Chih Chu, Chengbo Wu, “ Impact simulation and analysis for KINGBIRD ultra-light aircraft ”,中華民國航空太空學會會刊, 系列B, 第37卷, 第2期, pp.68-84, 2007.
    2. S.T. Jeuq, F.B. Hsiao, M.C. Chao, D.G. Zimcik and M. Nejad Ensan, “ Impact analysis of airport approach lighting towers with top-mass added ”, Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol.36, No.1, pp.007-019, 2004.
    3. Alexander, J. M., “ Approximate analysis of the collapse of thin cylindrical shells under axial loading ”, Quarterly Journal of Mechanics and Applied Mathematics, 13, 10-15, 1960.
    4. W. Abramowicz and N. Jones, “ Dynamic axial crushing of circular tubes ”, International Journal of Impact Engineering, Vol.2, No.3, pp.263-281, 1984.
    5. W. Abramowicz and N. Jones, “ Dynamic progressive buckling of circular and square tubes ”, International Journal of Impact Engineering, Vol.4, No.4, pp.243-270, 1986.
    6. N. Jones, “ Structural Impact ”, Cambridge University Press, 1989.
    7. W. Abramowicz and N. Jones, “ The effective crushing distance in axially compressed thin-walled metal columns ”, International Journal of Impact Engineering, Vol.1, pp.309-317, 1983.
    8. D. Al Galib and A. Limam, “ Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes ”, Thin-Walled Structure, 42, 1103-1137, 2004.
    9. S. Poonaya, C. Thinvongpituk and U. Teeboonma, “ An analysis of collapse mechanism of thin-walled circular tubes subjected to bending ”, International Journal of Mechanical, Industrial and Aerospace Engineering, 1:3, 2007.
    10. C. Thinvongpituk, S. Poonaya, S. Choksawadee and M. Lee, “ The ovalisation of thin-walled circular tube subjected to bending ”, Proceedings of the World Congress on Engineering, Vol. II, 2008.
    11. S. Poonaya, U. Teeboonma and C. Thinvongpituk, “ Plastic collapse analysis of thin-walled circular tubes subjected to bending ”,Thin-Walled Structure, 47, 637-645, 2009.
    12. A. G. Mamalis, “ Bending of cylindrical steel tube: numerical simulation using grid computing”, International Journal of Crashworthiness, 109-116, 2008.
    13. Dennis F. Shanahan, M. D. and M.P.H, “ Basic principles of crashworthiness ”, RTO-EN-HFM-113 Pathological Aspects and Associated Biodynamic in Aircraft Accident, The Human Factor and Medicine Panel (HFM) Lecture Series, Madrid, Spain, 2004.
    14. Dennis F. Shanahan, M. D. and M.P.H “ Human Tolerance and Crash Survivability ”, RTO-EN-HFM-113 Pathological Aspects and Associated Biodynamic in Aircraft Accident, The Human Factor and Medicine Panel (HFM) Lecture Series, Madrid, Spain, 2004.
    15. Federal Aviation Administration, FAA Regulations, Title 14 Aeronautics and Space, Vol. 2, Chapter 1, 103.1-103.23.
    16. 交通部民用航空局, 民用航空法, 第九章之一
    17. 交通部民用航空局, 超輕型載具管理辦法, 第七條
    18. 勢流科技股份有限公司, 結構分析軟體LS_DYNA技術講座Implicit/Explicit, 2006. (pp.38-40)
    19. AIR CREATION INC., “ QUARTZ 18 BI ” type ultra-light aircraft manufacture.
    20. AIR CREATION INC., “ SAFARI G-T BI ” type ultra-light aircraft manufacture.
    21. ASTM E9-89a, “ Standard test methods of compression testing of metallic materials at room temperature ”, 2004.
    22. CNS 12779-K6978, “ Method of test for tensile properties of glass fiber reinforced plastics ”, 1990.
    23. James M. Gere, ” Mechanics of materials - sixth edition ”, 2004.
    24. R. C. Hibbeler, ” Mechanics of materials - sixth edition, 2007.
    25. 民用航空局, AIP 電子示飛航指南
    26. C. C. Chou, “ The measurement of impact forces under dynamic crush using a drop tower test facility ”, SAE Technical Paper Series, No. 830467, 1983.
    27. 胡純逢, “ 薄管元件受軸向衝擊之動態行為研究 ”, 國立成功大學航空太空工程研究所碩士論文, 2009.
    28. 吳玟真, “ 輕型運動載具市場趨勢與適墜性分析 ”, 淡江大學航空太空工程所碩士論文, 2009.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE