簡易檢索 / 詳目顯示

研究生: 王詠慧
Wang, Yong-Huei
論文名稱: CaCu3Ti4O12中的次晶粒形成原因與導電機制之探討
Origin of the Formation of Subgrains and Conduction Mechanisms in CaCu3Ti4O12
指導教授: 方滄澤
Fang, Tsang-Tse
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: CaCu3Ti4O12介電常數次晶粒導電機制
外文關鍵詞: CaCu3Ti4O12, dielectric constant, subgrain, conduction mechanism
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   CaCu3Ti4O12為類似鈣鈦礦立方晶結構的介電材料,在室溫下具有極高的介電常數,約105~106,並且在相當廣泛的溫度區間有介電持平的效應,因此引起各界關注。但是關於造成CaCu3Ti4O12特殊介電性質的真正原因仍然無法確定,目前較為眾人接受的論點是以Maxwell-Wagner Model來解釋,認為CaCu3Ti4O12內包含半導性的晶粒以及絕緣性的晶界[1~4],但上述論點並無法解釋為何CaCu3Ti4O12的單晶也具有巨大的介電常數值,而本實驗室在CaCu3Ti4O12中觀察到次晶粒的存在[5],因此認為在單晶中,次晶粒與其邊界的異質結構也可能使CaCu3Ti4O12具有巨大介電常數值。
      本研究主要是藉由觀察CaCu3Ti4O12在不同熱腐蝕條件下的顯微結構來探討CaCu3Ti4O12的次晶粒形成原因。為了瞭解CaCu3Ti4O12的導電機制,我們也利用XPS來分析CaCu3Ti4O12內的金屬離子價數,但由前人文獻[44]中指出銅離子處於真空狀態會發生變化,因此本研究也會針對抽真空前後的實驗結果來比較。最後,本研究將分析摻雜Si後的CaCu3Ti4O12與CaCu3Ti4O12的J-E特性曲線,來觀察其導電行為的差異,來找出影響CaCu3Ti4O12導電機制的主要原因,並觀察是否與其介電機構也有關連。

      CaCu3Ti4O12 is a dielectric material which has cubic pervoskite-related structure. This material has attracted considerable attention because it has ultrahigh dielectric constant (about 105~106) at room temperature and good temperature stability over a wide temperature range. It can be explained using the barrier model of CaCu3Ti4O12 consists of semiconducting grains and insulating grain boundaries, However, the origin of colossal dielectric constant in CaCu3Ti4O12 is still remains unresolved. Fang observed subgrains in CaCu3Ti4O12[5] suggested that subgrains might be the origin responsible for the dielectric response inside single grain CaCu3Ti4O12.
    In this study, first of all, the formation mechanism of subgrains by thermal-etching under different conditions is a priority. Second, XPS has been taken advantage of researching the valances of metal ions for understanding the conduction mechanism in CaCu3Ti4O12, but it should be taken care that the valences of copper species in copper oxides had been known to be varied during vacuum annealing[44]. At least, the comparison of conduction behavior in CaCu3Ti4O12 with Si doped to pure CaCu3Ti4O12 has been discussed.

    目 錄 中文摘要 I 英文摘要 II 致謝 III 目 錄 IV 表 目 錄 VII 圖 目 錄 VIII 第一章 緒論 1 1-1前言 1 1-2 研究目的 3 第二章 理論基礎與文獻回顧 4 2-1 基本介電理論 4 2-1-1介電理論概述 4 2-1-2 極化機構[7] 6 2-2 Maxwell-Wagner model[7] 21 2-3 阻抗分析法[11,12] 24 2-4 障壁電容器(Barrier layer capacitor)[13-15] 30 2-5金屬-絕緣介面導電機制(MIM systems) 33 2-6 介電材料CaCu3Ti4O12概述 39 2-6-1 CaCu3Ti4O12介電性質 39 2-6-2 CaCu3Ti4O12結構 41 2-6-3 CaCu3Ti4O12導電機制 44 2-6-4 本實驗室近年來關於CaCu3Ti4O12研究之成果 45 第三章 實驗方法及步驟 54 3-1 實驗藥品 54 3-2 實驗流程 55 3-2-1 粉末製備 55 3-2-2 試片製備及燒結 55 3-3材料分析設備與量測方法 58 3-3-1 X-ray 繞射分析 58 3-3-2 電流電壓曲線量測 60 3-3-3 掃描電子顯微鏡(SEM, Scanning Electron Microscropy)觀察與背向式電子繞射(EBSD, Electron Back Scatter Diffraction)分析 60 3-3-4 原子力顯微鏡 (AFM, Atomic Force Microscropy) 61 3-3-5 X射線光電子能譜 (XPS, X-ray Photoelectron Spectrom) 62 第四章 結果與討論 65 4-1 CaCu3Ti4O12顯微結構分析 65 4-2 CaCu3Ti4O12導電機制探討 76 4-2-1 XPS結果分析 76 4-2-2 X-ray 繞射分析 92 4-2-3 J-E 特性曲線量測 94 4-2-4 阻抗分析 103 第五章 結論 106 參考文獻 107

    [1] M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight, J. Solid State Chem. 151, 2, 323-325 (2000)
    [2] A. Deschanvres, B. Raveau, F. Tollemer, Bull. Soc. Chim. France 11, 4077 (1967)
    [3] D. C. Sinclair, T. B. Adams, F. D. Morrison, A. R. West, Appl. Phys. Lett. 80, 12, 2153-2155 (2002)
    [4] P. Lunkenheimer , V. Bobnar, A. V. Pronin, A. I.Ritus, A. A. Volkov, A. Loidl, Phys. Rev. B 66, 052105-(1-4) (2002)
    [5] T. T. Fang, and C. P. Liu, Chem. Mater. 17, 167-5171 (2005)
    [6] 林緯傑, “不同相的TiO2及CaSiO3添加對CaCu3Ti4O12介電、導電和顯微結構的影響”,國立成功大學材料及工程研究所碩士論文(2007)
    [7] A.R. Von hippel, Dielectrics and Waves, Chap 31
    [8] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “Introduction to Ceramics”, 2nd Edition, John Wiley & Sons, New York (1976)
    [9] C. G. Koops, Phys. Rev. 83, 1, 121-124 (1951)
    [10] Vera, V. Daniel, “Dielectric Relaxation”, Electrical Research
    Association, Leatherhead, Surrey, England, p1-18(1967)
    [11] 邱碧秀, “電子陶瓷材料”, 徐氏基金會, 臺北巿, p129-153 (1988)
    [12] J. Ross Macdonald , Impedance Spectroscopy (1987)
    [13] A. J. Moulson, J. M. Herbert, Electroceramics, 2nd edition, Wiley, p326-p329
    [14] T. T. Fang, H. K. Shiau, J. Am. Ceram. Soc. 87, 11, 2072-2079 (2004)
    [15] J. M. Herbert, Ceramic dielectrics and capacitors, New York , p202-218 (1985)
    [16] C. LAIRD, Physics of Solid Dielectrics, p136 (1986)
    [17] S. M. Sze, Kwok K. Ng, “Physics of Semiconductor Devices”, 3rd edition, Wiley-interscience, p227-228 (2007)
    [28] C. C. Homes, T. Vogt, and S. M. Shapiro, M. A. Subramanian, A. P. Ramirez, Phys. Rev. B 67, 092106 (2003)
    [19] A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S. M.Shapiro, Solid State Communications 115, 217-220 (2000)
    [20] C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673-676 (2001).
    [21] D. C. Sinclair, T. B. Adams, A. R. West, Adv. Mater. v14, p1321(2002)
    [22] T. B. Adams, D.C. Sinclair, A. R. West, Adv. Mater. 14, 18, 1321-1323 (2002)
    [23] A. J. Moulson, J. M. Herbert, Electroceramics: Materials, Properties, and applications, Chapman & Hall, London, UK (1990)
    [24] L. Wu, Y. Zhu, S. Park, S. Shapiro, G. Shirane, J. Tafto, Phys. Rev. B 71, 014118-(1-7) (2005)
    [25] T. B. Adams, D.C. Sinclair, A. R. West, Phys. Rev. B 73, 0941241-9 (2006)
    [26] T. B. Adams, D.C. Sinclair, A. R. West, J. Am. Ceram. Soc. in press
    [27] T. T. Fang, L. T. Mei, J. Am. Ceram. Soc. 90, 2, 638-640 (2007)
    [28] T. T. Fang, L. T. Mei, H. F. Ho, Acta Materialia 54, 10, 2867-2875 (2006)
    [29] B. Bochu, M.N. Deschizeaux, J.C. Joibert, J. Solid State Chem. 29, 291 (1979)
    [30] Awatef Hassini, Monique Gervais, Jérôme Coulon, Vinh Ta Phuoc, Francois Gervais, Materials Science and Engineering B 87, 2, 164-168 (2001).
    [31] L. He, J.B. Neaton, M. H. Cohen, D. Vanderbilt, C. C. Homes, Phys. Rev. B 65, 214112-(1-11) (2002)
    [32] N. Kolev, R. P. Bontchev, A. J. Jacobson, V. N. Popov, V. G. Hadjiev, A. P. Litvinchuk, M. N. Iliev, Phys. Rev. B 66, 132102 (2002)
    [33] M. A. Subramanian, A. W. Sleight, Solid State Sciences 4, 3, 347-351 (2002)
    [34] Sung-Yoon Chung,Il-Doo Kim and Suk-Joong L. Kang, Nature Materials 3, (2004)
    [35] X. J. LuO, C. P. Yang, S. S. Chen, X. P. Song, H. Wang and K. Ba ̈rner, J. Appl. Phys. 108, 014107 (2010).
    [36] Marco A. L. Cordeiro, Flavio L. Souza, Edson R. Leite and Alexandre J. C. Lanfredi, Appl. Phys. Lett. 93, 182912(2008)
    [37] Michio MATSUOKA, J. Appl. Phys., 10, 6 (1971).
    [38] T. T. Fang, H. Y. Chung, and S. C. Liou, J. Appl. Phys. 106, 054106 (2009).
    [39] 蕭旭凱, “鈣鈦礦結構CaCu3Ti4O12之介電及電性的研究”, 國立 成功大學材料及工程研究所碩士論文(2003)
    [40] T. T. Fang and H. Y. Chung, J. Appl. Phys. 109, 014102 (2011)
    [41] Stock, B. D. C. a. S. R. Element of X-Ray diffraction. 3rd ed. Prentice Hall.
    [42] 林麗娟. X 光繞射原理及其應用. X光材料分析技術與應用專題 工業材料86 期, 100-109 (1994).
    [43] J. Li, M. A. Subramanian, H. D. Rosenfeld, C. Y. Jones, B. H. Toby and A. W. Sleight, Chem. Mater. 16, 5223(2004).
    [44] J. P. Tobin, W. Hirschwald, J. Cunningham, Applications of Surf. Sci. 16, 441(1983).
    [45] Briggs, D.; Seah, M. P., Eds; “Auger and X-ray Photoelectron Spectroscopy” in Practical Surface Analysis; sec. ed. Vol. 1; John Wiley & Sons, NY; p131,(1990)
    [46] M. Pouchard, J. P. Doumerc, A. Villesuzanne, Inorg. Chem. 47, 8487(2008).
    [47] 林佳瑩, “ZrO2、ZrSiO4及CaSiO3添加鈣鈦礦結構CaCu3Ti4O12之介電及顯微結構之探討”, 國立 成功大學材料及工程研究所碩士論文, (2005).
    [48] R.D. Shannon and C.T. Prewitt, Acta Crystallogr. B 25, 925 (1969).
    [49] D. Katrakova and F. Mücklich, Prakt. Metallogr. 39, 644 (2002).
    [50] P.R. Keller, A. Roshko, R. H. Geiss, K. A. Bertness, and T. P. Quinn, Microelectronic Eng. 75, 96 (2004).
    [51] R. Abbaschian, L. Abbaschian and R.E. Reed-Hill, Physical Metallurgy Principles, CT, USA, p225 (2010).
    [52] T. T. Fang and J.B. Hwang, J. Am. Ceram. Soc. 75, 915 (1992).
    [53] T. T. Fang and K.T. Lee, J. Am. Ceram. Soc. 72, 2304 (1989).
    [54] T. T. Fang, Y. H. Wang, and J. C. Kuo, accepted by J. Appl. Phys.(2011).
    [55] T. T. Fang, and Y. H. Wang, submitted to J. Electrochemical Soc.(2011).

    下載圖示 校內:2016-08-17公開
    校外:2016-08-17公開
    QR CODE