簡易檢索 / 詳目顯示

研究生: 汪楷茗
Uang, Kai-Ming
論文名稱: 高效率氮化鎵系列發光二極體之設計與製造
Design and Fabrication of High Efficiency GaN-Based Light-Emitting Diodes
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 106
中文關鍵詞: 高效率氮化鎵金屬基板發光二極體
外文關鍵詞: High efficiency, GaN, Metallic substrate, LEDs
相關次數: 點閱:47下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在針對氮化鎵系列發光二極體進行光輸出功率與發光效率之改善。首先,探討具有低電阻率、高透光率、匹配折射率之銦鋅氧化物(IZO)透明導電層(TCL),應用於大面積GaN基LED之亮度提升與其特性分析。其次,提出以鍍鎳金屬基板取代藍寶石基板,並結合區塊雷射剝離(laser lift-off, LLO)技術,製作垂直結構之LED (VM-LED),可解決包括元件散熱不良、電流分佈不均、低流明通量與發光不均等諸多方面的問題。再者,亦成功研製大面積高效率之VM-LED,並探討表面處理對其光電特性之影響。
    為進一步減輕傳統橫向結構GaN基LED之電流擁擠效應,我們提出一新穎製程,結合雷射區塊剝離與低成本之電鍍鎳技術,研製具鎳金屬基板、高發光效率之垂直式LED(VM-LED)。與傳統橫向結構GaN基LED相較,於20-80 mA工作電流下VM-LED之順向壓降約下降10-21%,而光輸出則超過兩倍;此外,其光輸出直至520 mA才趨飽和,為傳統LED之4.3倍高。VM-LED使用金屬基板達成垂直傳導之目的,造就電流擁擠效應之紓解、較大之有效出光面積、以及更佳之散熱能力。
    另一方面,為增加單一LED元件之光輸出,我們亦成功研製大面積之VM-LED,並使用電感耦合電漿(ICP)與化學蝕刻(KOH、HF、HCl)進行n-GaN表面處理,以改善大面積垂直式LED之光電特性。於350與800 mA工作電流、透過適當之表面處理,大面積(1mm x 1 mm)VM-LED之光輸出較傳統結構GaN/LED分別增加227% 與195%。

    In this dissertation, efforts to enhance the light extraction and power conversion efficiency of conventional GaN-based light-emitting diodes (LEDs) have been made. First, an indium zinc oxide (IZO) film with low resistivity, high transparency, and matched refractive index was deposited atop the large-area GaN-based LEDs as a transparent conduction layer (TCL) to improve the light extraction from the LED. Secondly, a novel fabrication process and performance characteristics of a vertical-structured GaN-based LED with metallic substrate (VM-LED) employing nickel electroplating and patterned laser lift-off (LLO) techniques were presented. Furthermore, large-area (0.6x0.6 and 1x1 mm2) high efficiency VM-LEDs, using a patterned laser lift-off technique and a Ni-electroplating process as well as a surface treatment of the top n-GaN epilayer by plasma and chemical etching, were also successfully fabricated and investigated.
    To further alleviate the current crowding effect of conventionally lateral-structured GaN-based LEDs, a novel process for fabricating high efficiency VM-LED utilizing cost-effective nickel electroplating and patterned LLO techniques was also demonstrated. As compared to regular LED, the forward voltage drop of the VM-LED at 20-80 mA is about 10-21% lower, while the Lop is more than twice in magnitude. Especially, the Lop exhibits no saturation or degradation at an injection current up to 520 mA which is about 4.3 times higher than that of the regular one. Substantial improvements in the VM-LEDs performances are mainly attributed to the use of metallic substrate which results in less current crowding, larger effective area, and higher thermal conductivity.
    To enhance the light intensity of a single LED chip for high power applications and improve the performance of VM-LEDs, the effect of surface treatment on large-area (0.6x0.6 and 1x1 mm2) high efficiency VM-LEDs also were studied. As compared to regular LEDs of the same size, both the forward voltage drop and Lop of the VM-LED were substantially improved. With inductively coupled plasma etching followed by an additional KOH etching and an HF/HCl treatment on the n-GaN layer, an increase in Lop by 227% and 195% has been achieved for the (1x1 mm2)-sized VM-LEDs under the injection current of 350 and 800 mA, respectively.

    Chapter 1 Introduction ………………………………………… 1 1-1 Overview …………………………………………………… 1 1-2 Organization of the dissertation …………………………… 4 References Chapter 2 Basics of high efficiency GaN-based light-emitting diodes 10 2-1 An overview of conventional lateral-structured GaN-based LEDs 10 2-2 Current crowding effect and current spreading design ……… 12 2-3 Issue of light extraction in LEDs …………………………… 15 2-4 Substrate engineering for vertical-structured GaN-based LEDs 16 2-4.1 Wafer bonding ……………………………………… 17 2-4.2 Nickel-electroplating technique ……………………… 18 2-4.3 Laser lift-off ………………………………………… 20 References Chapter 3 High-power GaN-based LEDs with transparent indium zinc oxide films ……………………………………… 31 3-1 Introduction ………………………………………………… 31 3-2 Fundamental characteristics of indium zinc oxide films …… 33 3-3 Experiments ………………………………………………… 34 3-3.1 Sputtering process …………………………………… 34 3-3.2 Device fabrication …………………………………… 34 3-4 Results and discussion ……………………………………… 36 3-5 Summary …………………………………………………… 40 References Chapter 4 Highly efficient vertical-structured GaN-based LEDs using patterned laser lift-off and nickel-electroplating processes 4-1 Introduction ………………………………………………… 58 4-2 Device fabrication ………………………………………… 59 4-2.1 Sample treatment prior to Ni-plating process ……… 60 4-2.2 Nickel-plating process ………………………………… 60 4-2.3 Patterned laser lift-off process ……………………… 61 4-2.4 Device process ……………………………………… 62 4-3 Results and discussion ……………………………………… 62 4-4 Summary ................................... 65 References Chapter 5 Effect of surface treatment on the performance of vertical GaN-based high-power LEDs with metallic substrates 5-1 Introduction ………………………………………………… 79 5-2 Experiments ……………………………………………… 81 5-2.1 Device process ……………………………………… 81 5-2.2 Surface treatment …………………………………… 82 5-3 Results and discussion …………………………………… 83 5-3.1 Contact properties …………………………………… 83 5-3.2 Surface morphology ………………………………… 84 5-3.3 Electrical and optical characteristics ……………… 85 5-4 Summary …………………………………………………… 88 References Chapter 6 Conclusions and future work ……………………… 100 6-1 Conclusions ………………………………………………… 100 6-2 Suggestions for future work ……………………………… 102

    Chapter 1
    [1] R. A. Logan, H. G. White, and W. Wiegmann, Appl. Phys. Lett. 13, 139 (1968).
    [2] W. O. Groves, A. H. Herzog, and M. G. Craford, Appl. Phys. Lett. 19, 184 (1971).
    [3] J. Nishizawa, and K. Suto, J. Appl. Phys. 43, 3484 (1977).
    [4] R. R. Bradley, and R. M. Ash, J. Crystal Growth 77, 629 (1986).
    [5] F. A. Kish, Electron. Lett. 32, 132 (1996).
    [6] M. R. Krames, Appl. Phys. Lett. 75, 2365 (1999).
    [7] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995).
    [8] T. D. Moustakas, T. Lei, and R. J. Molnar, Physica B 185, 39 (1993).
    [9] E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2003).

    Chapter 2
    [1] T. D. Moustakas, T. Lei, R. J. Molnar, Physica B 185, 39 (1993).
    [2] J. M. Van Hove, R. Hickman, J. J. Klaassen, P. P. Chow, and P. P. Ruden, Appl. Phys. Lett. 70, 282 (1997).
    [3] W. Gotz, L. T. Romano, J. Walker, N. M. Johnson, and R. J. Molnar, Appl. Phys. Lett. 72, 1214 (1998).
    [4] Y. A. Vodakov, E. N. Mokhov, A. D. Roenkov, M. E. Boiko, and P. G. Baranov, J. Cryst. Growth 10, 183 (1998).
    [5] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyada, Appl. Phys. Lett. 48, 353 (1986).
    [6] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
    [7] S. Keller, P. B. Keller, Y.F. Wu, B. Heying, D. Kapolnek, J. S. Speck, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 68, 1525 (1996).
    [8] H. P. Maruskas, J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
    [9] H. MorkoG, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).
    [10] S. Yoshida, S. Misawa, and S. Gonda, Appl. Phys. Lett. 42, 427 (1983).
    [11] H. Amano, N. Sawaki, I. Akasaki, and Y. Touoda, Appl. Phys. Lett. 48, 353 (1986).
    [12] B. Beaumont, Ph. Vennegures, and P. Gibart, Phys. Stat. Sol. (b) 227, 1 (2001).
    [13] C.I.H. Ashby, C. C. Mitchell, J. Han, N. A. Missert, P. P. Provencio, D. M. Follstaedt, G. M. Peake, and L. Griego, Appl. Phys. Lett. 77, 3233 (2000).
    [14] T. Detchprohm, M. Yano, S. Sano, R. Nakamura, S. Mociduki, T. Nakamura, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 40, L16 (2001).
    [15] Q. Z. Liu and S. S. Lau, Solid-State Electron. 42, 677 (1998).
    [16] H. W. Jang, K. H. Kim, J. K. Kim, S. W. Hwang, J. J. Yang, K. J. Lee, S. J. Son, and J. L. Lee, Appl. Phys. Lett. 79, 1822 (2001).
    [17] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, and K. K. Shih, Appl. Phys. Lett. 74, 1275 (1999).
    [18] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, Appl. Phys. Lett. 73, 2953 (1998).
    [19] J. K Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai , J. Appl. Phys. 86, 4491 (1998).
    [20] L. C. Chen, F. R. Chen, J. J. Kai , J. K Ho, C. S. Jong, C. C. Chiu, C. N. Huang, and K. K. Shih, J. Appl. Phys. 86, 3862 (1999).
    [21] E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2003).
    [22] S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, Appl. Phys. Lett. 78, 3265 (2001).
    [23] H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, Appl. Phys. Lett. 77, 1903 (2000).
    [24] H. Kim, S. J. Park, and H. Hwang, IEEE Trans. Electron Devices 48, 1715 (2002).
    [25] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, Appl. Phys. Lett. 79, 2925 (2001).
    [26] S.Y. Kim, H.W. Jang, and J.L. Lee, Appl. Phys. Lett. 82, 61 (2003).
    [27] K. Nakahara, K. Tamura, M. Sakai, D. Nakagawa, N. Ito, M. Sonobe, H. Takasu, H. Tampo, P. Fons, K. Matsubara, K. Iwata, A. Yamada, and S. Niki, Jpn. J. Appl. Phys. 43 (2A), L180 (2004).
    [28] S. P. Jung, C. H. Lin, H. M. Chan, Z. Fan, J. G. Lu, and H. P. Lee, Phys. Stat. Sol. (a) 201 (12), 2827 (2004).
    [29] K. M. Uang, S. J. Wang, S. L. Chen, C. K. Wu, S. C. Chang, T. M. Chen, and B. W. Liou, Jpn. J. Appl. Phys. 44, 2516 (2005).
    [30] C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, IEEE Photon. Technol. Lett. 18, 274 (2006).
    [31] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, Appl. Phys. Lett. 77, 2822 (2000).
    [32] J. Jasinski, Z. Liliental-Weber, S. Estrada, and E. Hu, Appl. Phys. Lett. 81, 3152 (2002).
    [33] W. S. Wong, M. Kneissl, P. Mei, D. W. Treat, M. Teepe, and N. M. Johnson, Appl. Phys. Lett. 78, 1198 (2001).
    [34] Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, IEEE Photonics Technol. Lett. 14, 1400 (2002).
    [35] W. S. Wong, M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, A. Salleo, and N. M. Johnson, J. Mater. Res. 17, 890 (2002).
    [36] C. F. Chu, C. C. Yu, H. C. Cheng, C. F. Lin, and S. C. Wang, Jpn. J. Appl. Phys. 42, L147 (2003).
    [37] B. S. Tan, S. Yuan, and X. J. Kang, Appl. Phys. Lett. 84, 2757 (2004).
    [38] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
    [39] D. W. Kim, H. Y. Lee, M. C. Yoo, and G. Y. Yeom, Appl. Phys. Lett. 86, 052108-1, (2005).
    [40] M. Braunovic, Proceedings of the Thirty-Sixth IEEE Holm and the Fifteenth International Conference on Electrical Contacts, 461 (1990).
    [41] M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, Appl. Phys. Lett. 69, 1749 (1996).
    [42] M. K. Kelly, O. Ambacher, M. Stutzmann, M. Brandt, R. Dimitrov, and R. Handschuh, United States Patent 6,559,075 B1 (2003).
    [43] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, Appl. Phys. Lett. 75, 1360 (1999).

    Chapter 3
    [1] S. Nakamura, The Blue Laser Diode (Springer, Berlin, 1997).
    [2] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
    [3] I. Mártil, E. Redondo, and A. Ojeda, J. Appl. Phys. 81, 2442 (1997).
    [4] Y. Arakawa, T. Someya, and K. Tachibana, IEICE Trans. Electron. E83-C, 564 (2000).
    [5] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, Appl. Phys. Lett. 78, 1303 (2001).
    [6] C. Algora, IEEE Photon. Technol. Lett. 10, 331 (1998).
    [7] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J O’shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, Appl. Phys. Lett. 78, 3379 (2001).
    [8] K. H. Kim, K. C. Park, and D. Y. Ma, J. Appl. Phys. 81, 7764 (1997).
    [9] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, and C. S. Chang, Solid-State Electron. 47, 849 (2003).
    [10] L. C. Chen, J. K. Ho, C. S. Jong, C. C. Chiu, K. K. Shih, and F. R. Chen, Appl. Phys. Lett. 76, 3703 (2000).
    [11] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, Appl. Phys. Lett. 74, 1275 (1999).
    [12] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, Appl. Phys. Lett. 79, 2925 (2001).
    [13] S. Y. Kim, H. W. Jang, and J. L. Lee, Appl. Phys. Lett. 82, 61 (2003).
    [14] K. Nakahara, K. Tamura, M. Sakai, D. Nakagawa, N. Ito, M. Sonobe, H. Takasu, H. Tampo, P. Fons, K. Matsubara, K. Iwata, A. Yamada, and S. Niki, Jpn. J. Appl. Phys. 43 (2A), L180 (2004).
    [15] S. P. Jung, C. H. Lin, H. M. Chan, Z. Fan, J. G. Lu, and H. P. Lee, Phys. Stat. Sol. (a) 201 (12), 2827 (2004).
    [16] J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, Appl. Phys. Lett. 67, 2246 (1995).
    [17] N. Naghavi, A. Rougier, C. Marcel, C. Guéry, J. B. Leriche, and J. M. Tarascon, Thin Solid Films 360, 233 (2000).
    [18] K. M. Uang, S. J. Wang, S. L. Chen, T. M. Chen, and B. W. Liou, to appear in Thin Solid Films (2006).
    [19] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, IEEE Photon. Technol. Lett. 15, 649 (2003).
    [20] H. G. Hong, S. S. Kim, D. Y. Kim, T. Lee, J. O. Song, J. H. Cho, C. Sone, Y. Park, and T. Y. Seong, Appl. Phys. Lett. 88, 103505 (2006).
    [21] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, Appl. Phys. Lett. 84, 3885 (2004).
    [22] K. M. Uang, S. J. Wang, S. L. Chen, C. K. Wu, S. C. Chang, T. M. Chen, and B. W. Liou, Jpn. J. Appl. Phys. 44 (4B), 2516 (2005).
    [23] S. J. Wang, S. L. Chen, K. M. Uang, W. C. Lee, T. M. Chen, C. H. Chen, and B. W. Liou, IEEE Photon. Technol. Lett. 18, 1146 (2006).
    [24] M. Ahmad and B. M. Arora, Solid-State Electron. 35, 1441 (1992).
    [25] C. Y. Lo, C. L. Hsu, Q. X. Yu, H. Y. Lee, and C. T. Lee, J. Appl. Phys. 92, 274 (2002).
    [26] T. Minami, T. Kakumu, and S. Takata, J. Vac. Sci. Technol. A 14, 1704 (1996).
    [27] T. Minami, T. Kakumu, Y. Takeda, and S. Takata, Thin Solid Films 290-291, 1 (1996).
    [28] X. A. Cao, E. B. Stokes, P. Sandvik, N. Taskar, J. Kretchmer, and D. Walker, Solid-State Electron. 46, 1235 (2002).

    Chapter 4
    [1] S. Nakamura: The Blue Laser Diode (Springer, Berlin, 1997).
    [2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, Appl. Phys. Lett. 76, 22 (2000).
    [3] I. Mártil, E. Redondo, and A. Ojeda: J. Appl. Phys. 81, 2442 (1997).
    [4] Y. Arakawa, T. Someya, and K. Tachibana, IEICE Trans. Electron. E83-C, 564 (2000).
    [5] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, Appl. Phys. Lett. 78, 1303 (2001).
    [6] M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann, Phys. Status Solidi A 159, R3 (1993).
    [7] W. S. Wong, L. F. Schloss, G. S. Sudhir, B. P. Linder, K. M. Yu, E. R. Weber, T. Sands, and N. W. Cheung, Mater. Res. Soc. Symp. Proc. 449, 1011 (1997).
    [8] W. S. Wong, T. Sands, and N. W. Cheung, Appl. Phys. Lett. 72, 599 (1998).
    [9] R. H. Horng, C. E. Lee, S. C. Hsu, S. H. Huang, C. C. Wu, and C. K. Kung, Phys. Stat. Sol. A 201, 2786 (2004).
    [10] W. S. Wong, M. Kneissl, P. Mei, D. W. Treat, M. Teepe, and N. M. Johnson, Appl. Phys. Lett. 78, 1198 (2001).
    [11] Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, IEEE Photonics Technol. Lett. 14, 1400 (2002).
    [12] W. S. Wong, M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, A. Salleo, and N. M. Johnson, J. Mater. Res. 17, 890 (2002).
    [13] C. F. Chu, C. C. Yu, H. C. Cheng, C. F. Lin, and S. C. Wang, Jpn. J. Appl. Phys. 42, L147 (2003).
    [14] D. S. Wuu, S. C. Hsu, S. H. Huang, and R. H. Horng, Phys. Status Solidi A 201, 2699 (2004).
    [15] B. S. Tan, S. Yuan, and X. J. Kang, Appl. Phys. Lett. 84, 2757 (2004).
    [16] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
    [17] S. Tripathy, S. J. Chua, and A Ramam, Journal of physics, Condens. Matter 14, 4461 (2002).
    [18] T. Kuroda, A. Tackeuchi, and T. Sota, Appl. Phys. Lett. 76, 3753 (2000).

    Chapter 5
    [1] H. Morkoc: Nitride Semiconductors and Devices (Springer, Berlin, 1999).
    [2] Y. Arakawa, T. Someya, and K. Tachibana, IEICE Trans. Electron. E83-C, 564 (2000).
    [3] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, Appl. Phys. Lett. 78, 1303 (2001).
    [4] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
    [5] D. W. Kim, H. Y. Lee, M. C. Yoo, and G. Y. Yeom, Appl. Phys. Lett. 86, 052108 (2005).
    [6] S. J. Wang, S. L. Chen, K. M. Uang, W. C. Lee, T. M. Chen, C. H. Chen, and B. W. Liou, IEEE Photon. Technol. Lett. 18, 1146 (2006).
    [7] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J O’shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, Appl. Phys. Lett. 78, 3379 (2001).
    [8] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, Appl. Phys. Lett. 75, 1360 (1999).
    [9] S. J. Kim, Jpn. J. Appl. Phys. 44, 2921 (2005).
    [10] W. S. Wong, M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, A. Salleo, and N. M. Johnson, J. Mater. Res. 17, 890 (2002).
    [11] S. H. Huang, R. H. Horng, S. C. Hsu, T. Y. Chen, and D. S. Wuu, Jpn. J. Appl. Phys. 44, 3028 (2005).
    [12] B. S. Tan, S. Yuan, and X. J. Kang, Appl. Phys. Lett. 84, 2757 (2004).
    [13] S. J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, C. H. Chen, and B. W. Liou, Appl. Phys. Lett. 87, 011111 (2005).
    [14] M. Ahmad, and B. M. Arora, Solid-State Electron. 35, 1441 (1992).
    [15] S. Tripathy, S. J. Chua, and A. Ramam, J. Phys.: Condens. Matter 14, 4461 (2002).
    [16] A. Motayed, M. Jah, A. Sharma, W. T. Anderson, C. W. Litton, and S. N. Mohammad, J. Vac. Sci. Technol. B 22, 663 (2004).
    [17] Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. Denbaars, S. Nakamura, and E. L. Hu, Jpn. J. Appl. Phys. 43, L637 (2004).
    [18] T. Kuroda, A. Tackeuchi, and T. Sota, Appl. Phys. Lett. 76, 3753 (2000).

    下載圖示 校內:2007-07-19公開
    校外:2007-07-19公開
    QR CODE