| 研究生: |
張峰銘 Chang, Feng-Ming |
|---|---|
| 論文名稱: |
以濺鍍法成長氮化鋁成核層之改善氮化鎵發光二極體特性與研究 GaN-Based Light Emitting Diode with Sputtered AlN Nucleation Layer |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 氮化鎵 、發光二極體 、多重量子井 、濺鍍 、氮化鋁 |
| 外文關鍵詞: | GaN, LED, MQW, sputter, AlN |
| 相關次數: | 點閱:65 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們分別利用有機金屬化學氣相沉積機台(MOCVD)以及濺鍍法(sputter)成長氮化鋁(AlN) Nucleation layer於圖案化藍寶石基板(pattern Sapphire Substrate )上。在不同的AlN Nucleation layer下,透過高解析度 X-光繞射儀(X-ray)、原子力顯微鏡、以及抗靜電測試,觀察其晶格品質。
AFM量測顯示出以濺鍍法成長的薄膜比MOCVD所成長的薄膜均勻性還要好。在XRD的量測中可以觀察到,以濺鍍法成長的AlN Nucleation layer其(002)與(102) 半高寬可以大幅度的減少,綜合AFM與XRD量測結果可以得知,使用濺鍍法成長的AlN Nucleation layer,可以有效的改善GaN發光二極體的磊晶品質。此外,在抗靜電測試中,在反偏600V的測試電流下,濺鍍法成長的AlN Nucleation laye的結構試片還有60%以上的存活率,也就是說濺鍍法來成長AlN Nucleation Layer可以改善成核品質,進而提升抗靜電放電能力。
In this paper, we grew aluminum nitride (AlN) nucleation layer on the patterned sapphire substrates (PSS) using sputter and metal-organic chemical vapor deposition (MOCVD), respectively. We also analyze the crystal qualities of the LEDs with different growth modes of AlN nucleation layer using high resolution X-ray diffraction (X-ray), atomic force microscopy (AFM), and electrostatic discharge (ESD) test.
The AFM results show the AlN nucleation film grown by sputter was more uniform than that grown by MOCVD. In the XRD measurement, it was clearly found that full-width at half-maximum (FWHM) of the (002) and (102) spectra of the LED with sputtered AlN nucleation layer were reduced substantially. According to the AFM and XRD results, it indicates that the crystal quality of GaN was improved by the sputtered AlN nucleation layer. In addition, with 60% survival rate in the ESD test, it was found that the LED with sputtered AlN nucleation layer can endure ESD surges up to −600 V. The enhancement of the ESD endurance of the LED can be attributed to the improvement of overall GaN crystal quality.
[1] S.M.Sze Semiconductor devices physics and technology 2nd Edition. (2002)
[2] Donald A.Neamen Semiconductor physics & devices basic principles 2nd Edition. (2003)
[3] A. Krost and A. Dadgar, “GaN-based devices on Si”, phys. stat. sol. (a), vol. 194, no. 2, pp. 361-375, (2002)
[4] Comninou, M. A. and J. Dunders “The angular dislocation in a half-space. J.Elast”, Vol.5, pp. 203-216, (1975)
[5] Klein, C. and C. S. Hurlburt Jr. Manual of mineralogy, 21st Edition, John Wiley & Sons. (1993)
[6] G. H.Davis, and S. J. Reynolds structural geology of rocks and regions, 2nd Edition, John Wiley & Sons., (1996).
[7] H. Amano, N. Sawaki, I. Akasaki, and Y. Togoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer ”, Appl. Phys.Lett., vol. 48, no.5, pp. 353-356, (1986).
[8] S. Nakamura, “GaN growth using GaN buffer layer”, Jpn. J. Appl. Phys., vol. 30, no. 10A, pp. L1705-L1707,(1991).
[9] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN‐based light‐emitting diodes ”Appl. Phys. Lett., vol. 66, no. 10, pp. 1249-1251, (1995).
[10] Y. S. Cho, H. Hardtdegen, N. Kaluza, R. Steins, G. Heidelberger, and H. Luth, “The growth mechanism of GaN with different H-2/N-2 carrier gas ratios”, J. Cryst. Growth, vol. 307, no. 1, pp. 6-13, (2007).
[11] X. G. Zhang, B. Soderman, E. Armour, and A. Paranjpe “Investigation of MOCVD growth parameters on the quality of GaN epitaxial layers”, J. Cryst. Growth, vol. 318, no.1, pp. 436-440, (2011).
[12] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenMaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett. Vol. 68, no. 5, pp. 643-645, (1996).
[13] J. Chen, S. M. Zhang, B. S. Zhang, J. J. Zhu, G. Feng, X. M. Shen, Y. T. Wang, H. Yang, and W. C. Zheng, “Influences of reactor pressure of GaN buffer layers on morphological evolution of GaN grown by MOCVD”, J. Cryst. Growth, vol. 256, no. 3-4, pp. 248–253, (2003).
[14] J. Chen, S. M. Zhang, B. S. Zhang, J. J. Zhu, G. Feng, X. M. Shen, Y. T. Wang, H. Yang, and W. C. Zheng, “Effects of reactor pressure on GaN nucleation layers and subsequent GaN epilayers grown on sapphire substrate”, J. Cryst. Growth, vol. 254, no. 3-4, pp. 348-352, (2003).
[15] M. S. Yi, H. H. Lee, D. J. Kim, S. J. Park, D. Y. Noh, C. C. Kim, and J. H. Je, “Effects of growth temperature on GaN nucleation layers”, Appl. Phys. Lett.,vol. 75, no. 15, pp. 2187-2189, (1999).
[16] J. N. Kuznia, M. AsifKhan, D. T. Olson, R. Kaplan, and J. Freitas, “Influence of buffer layers on the deposition of high-quality single-crystal GaN over sapphire substrates”, J. Appl. Phys., vol. 73, no. 9, pp. 4700-4702, (1993).
[17] L. Sugiura, K. Itaya, J. Nishio, H. Fujimoto, and Y. Kokubun, “Effects of thermal treatment of low-temperature GaN buffer layers on the quality of subsequent GaN layers”, J. Appl. Phys., vol. 82, no. 10, pp. 4877-4882, (1997).
[18] K. S. Kim, C. S. Oh, K. J. Lee, G. M. Yang, C. H. Hong, K. Y. Lim, H. J. Lee, and A. Yoshikawa, “Effects of growth rate of a GaN buffer layer on the properties of GaN on a sapphire substrate”, J. Appl. Phys., vol. 85, no. 12, pp. 8441-8444, (1999).
[19] T. Ito, M. Sumiya, Y. Takano, K. Ohtsuka, S. Fuke, “Influence of thermal annealing on GaN buffer layers and the property of subsequent GaN layers grown by metalorganic chemical vapor deposition”, Jpn. J. Appl. Phys., vol.38, no. 2A, pp. 649-653, (1999).
[20] X. H. Wu, P. Fini, S. Keller, E. J. Tarsa, B. Heying, U. K. Mishra, S.P. DenBaars, and J.S.Speck, “Morphological and structural transitions in GaN films grown on sapphire by metal-organic chemical vapor deposition”Jpn.J.Appl.Phys., vol. 35, no. 12B, pp. L1648-L1651, (1996).
[21] P. Fini, X. Wu, E. J. Tarsa, Y. Golan, V. Srikant, S. Keller, S. P. DenBaars, and J. S. Speck, “The effect of growth environment on the morphological and extended defect evolution in GaN grown by metalorganic chemical vapor deposition”Jpn. J. Appl. Phys., vol. 37, no. 8, pp. 4460-4466, (1998).
[22] K.Uchida, J. Gotoh, S. Goto, T. Yang, A. Niwa, J. Kasai, and T. Mishima, “Morphological evolution of the InGaN-based quantum well surface due to a reduced density of threading dislocations in the underlying GaN through higher growth pressure”, Jpn. J. Appl. Phys., vol. 39, no. 4A, pp. 1635-1641, (2000).
[23] S. Nakamura, M. Senoh, S. Nagahama,N. Iwasa, T.Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Ridge-geometry InGaN multi-quantum-well-structure laser diodes”, Appl.Phys. Lett., vol. 69, no. 10, pp. 1477-1479, (1996).
[24] S. Kim, J. Oh, J. Kang, D. Kim, J. Won, J. W. Kim, and H. K.Cho, “Two-step growth of high quality GaN using V/III ratio variation in the initial growth stage” , J. Cryst. Growth, vol. 262, no. 1-7, pp. 7-13, (2004).
[25] T. Yang, K. Uchida, T. Mishima, J. Kasai, and J. Gotoh, “Control of initial nucleation by reducing the V/III ratio during the early stages of GaN growth”, Phys. Stat. Sol. (a), vol. 180, no. 1, pp. 45-50, (2000).
[26] S. Figge, T. Bottcher, S. Einfeldt, and D. Hommel, “In situ and ex situ evaluation of the film coalescence for GaN growth on GaN nucleation layers”, J. Cryst. Growth, vol. 221, pp. 262-266, (2000).
[27] J. Han, T. B. Ng, R. M. Biefeld, M. H. Crawford, and D. M. Follstaedt, “The effect of H-2 on morphology evolution during GaN metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol. 71, no. 21, pp. 3114-3316, (1997).
[28] E. F. Schubert, Light Emitting Diodes, 1st ed. Cambridge University Press, Cambridge, Chap. 12, pp. 245-259, (2003).
[29] X. A. Cao, S. F. LeBoeuf, M. P. D’Evelyn, S. D. Arthur, J. Kretchmer, C. H. Yan, and Z. H. Yang,” Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates”, Appl. Phys. Lett., vol. 84, no. 21, pp. 4313-4315, (2004) .
[30] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, “Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature-deposited buffer layer between high-temperature-grown GaN”, Jpn. J. Appl. Phys., vol. 37, no. 3B, pp. L316-L318, (1998) .
[31] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template” Appl. Phys. Lett., vol. 89, no. 16, pp. 161105, (2006) .
[32] T. S. Zheleva, O. H. Nam, M. D. Bremser, and R. F. Davis, “Dislocation density reduction via lateral epitaxy in selectively grown GaN structures”, Appl. Phys. Lett., vol.71, no.17, pp. 2472-2474, (1997).
[33] T. Shibata, H. Sone, K. Yahashi, M. Yamaguchi, K. Hiramatsu, N. Sawaki, and N. Itoh, “Hydride vapor-phase epitaxy growth of high-quality GaN bulk single crystal by epitaxial lateral overgrowth”, J. Cryst. Growth, vol.189, pp.67-71, (1998) .
[34] Michael Quirk,and Julian Serda “Semiconductor Manufacturing Technology”.
[35] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolenk, B. P. Keller, S. P. Denbaars, and J. S. Speck, "Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films," Appl. Phys. Lett., vol. 68, no.5, pp. 643-645, (1996).
[36] S. P. Chang, C. H. Wang, C. H. Chiu, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang "Characteristics of efficiency droop in GaN-based light emitting diodes with an insertion layer between the multiple quantum wells and n-GaN layer" Appl. Phys. Lett., vol.97, no. 25, pp. 251114, (2010).
[37] P. Perlin, C. Jauberthie-Carillon, J. P. Itie, A. S. Miguel, I. Grzegory, and A. Polian, "Raman-Scattering and X-Ray-Absorption Spectroscopy in Gallium Nitride under High-Pressure," Phys. Rev. B, vol. 45, no. 1, pp. 83-89, Jan 1 (1992).
[38] C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, "Strain-related phenomena in GaN thin films, " Phys. Rev. B, vol. 54, no.24, pp. 17745-17753, (1996).
[39] W Shockley, W.T Read, “Statistics of the recombinations of holes and electrons”, Phys. Rev. vol.87, pp. 835-842 (1952).
[40] T. H. Chiang, Y. Z. Chiou, S. J. Chang, C. K. Wang, T. K. Ko, T. K. Lin, C. J. Chiu, and S. P. Chang, "Improved Optical and ESD Characteristics for GaN-Based LEDs With an n−-GaN Layer" IEEE Trans. Device Mater. Reliab., vol. 11, no. 1, pp. 76-80, (2011).
[41] S. K. Jeon, J. G. Lee, E. H. Park, J. Jang, J. G. Lim, S. K. Kim, and J.S. Park, "The effect of the internal capacitance of InGaN-light emitting diode on the electrostatic discharge properties" Appl. Phys. Lett., vol. 94, no. 13, pp. 131106, (2009).
[42] S. C. Shei, J. K. Sheu, and C. F. Shen, "Improved Reliability and ESD Characteristics of Flip-Chip GaN-Based LEDs With Internal Inverse-Parallel Protection Diodes" IEEE Electron Device Lett., vol. 28, no. 5, pp. 346-349, (2007).
[43] C. H. Jang, J. K. Sheu, S. J. Chang, M. L. Lee, C. C. Yang, S. J. Tu, F. W. Huang, and C. K. Hsu, "Effect of Growth Pressure of Undoped GaN Layer on the ESD Characteristics of GaN-Based LEDsGrown on Patterned Sapphire" IEEE Photonics Technol. Lett., vol. 23, no. 14, (2011).