| 研究生: |
鄧晧翔 TANG, HOU-CHEONG |
|---|---|
| 論文名稱: |
預力預鑄節塊墩柱之長期變形研究 Long-Term Deformation of Precast Prestressed Concrete Segmental Pier Columns |
| 指導教授: |
方一匡
Fang, I-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 墩柱 、收縮 、潛變 、彈性應變 、預力損失 、溫度效應 |
| 外文關鍵詞: | shrinkage, creep, elastic strain, prestress losses, temperature effect |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究所探討的高雄港聯外道路高架橋之預鑄節塊墩柱為一創新技術工程,為了能深入探討預鑄節塊墩柱之變形行為,本研究於該工程新生路北段第四單元(U4)預鑄墩柱節塊埋設應變計,藉此監測混凝土的變形,並與現有的預測式比較,評估墩柱內有效預力狀況。
墩柱軸向應變在經歷收縮、施預力、潛變及鋼絞線之鬆馳已達穩定狀態,施加預力階段所增加的彈性應變為224 × 10-6 ~ 250 × 10-6 。於施加預力800天後的應變改變量為325 × 10-6~ 504 × 10-6,預力損失為1057~1413 kgf/cm2,約為初始預力的7.4~9.8%,均在設計容許值以內。因墩柱應變已趨近穩定狀態,後續改變主要為溫度效應之影響。墩柱因受到季節性的大氣溫度變化而產生應變改變量,約為79 × 10-6~ 99 × 10-6的應變改變量。因日夜溫差與直接日照照射所造成的影響約為季節性的大氣溫度變化的一半,為35 × 10-6~ 45 × 10-6的應變改變量。
The precast prestressed segmental pier column of Kaohsiung Port Viaduct this thesis studying for is an Innovative Technology Engineering. For investigate the deformation behavior of the precast prestressed segmental pier column, we embedded eight strain gauges at each of the segmental pier column in 5-span unit, monitor the deformation of the concrete and compared with prognosticated. Evaluate the effective prestress of the segmental pier column.
The deformation of the pier column after shrinkage、prestressing、creep of concrete and relaxation of prestressing steel is almost stable. The deformation of the concrete at prestressing had generated 224 × 10-6 ~ 250 × 10-6 elastic strain, and generated
325 × 10-6~ 504 × 10-6 concrete strain, which is 1057~1413 kgf/cm2 external prestress losses, accounting for 7.4%~9.8% of the initial pretress within 800 days after prestressing. Due to the deformation of the pier column is almost stable, thermal deformation is the main affect for the change of the deformation. The average temperature change between winter and summer form a deformation of the concrete, which is 79 × 10-6 ~ 99 × 10-6 concrete strain. Also, the sunshine and the average temperature change day and night form a deformation of the concrete, which is 35 × 10-6 ~ 45 × 10-6 concrete strain.
1. ACI Committee 209, “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,” American Concrete Institute, Oct. 1978, pp. 98.
2. ACI Committee 363, “State-of-the-Art-Report on High-Strength Concrete,” American Concrete Institute, 1997.
3. American Association of State Highway and Transportation Officials, “AASHTO Standard Specifications for Highway Bridges,” Fifteenth Edition, Washington DC. , 1993.
4. American Association of State Highway and Transportation Officials, “AASHTO-LRFD Bridge Design Specifications,” Second Edition, Washington DC. , 1998.
5. ASTM C39, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” American Association of State Highway and Transportation Officials, 1994.
6. ASTM C469, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” American Association of State Highway and Transportation Officials, 1994.
7. ASTM C512, “Standard Test Method for Creep of Concrete in Compression,” American Association of State Highway and Transportation Officials, 1994.
8. CEB-FIP, “Model Code for Concrete Structure,” Comite Euro-Internation du Betion, 1978.
9. CEB-FIP, “Model Code for Concrete Structure,” Comite Euro-Internation du Betion, 1990.
10. Lin, T. Y., and Burns, N. H., “Design of Prestressed Concrete Structure,” 3rd Edition in SI units, 1982, 646 pp.
11. Neville, A. M., “Properties of Concrete,” Piman, London, 1981, 671 pp.
12. Office of Research, Development, and Technology, Office of Infrastructure, RDT, “Portland Cement Concrete Pavements Research”,2011
13. Yao, Y., and Li, J., “A Study on Creep and Drying Shrinkage of High Performance Concrete,” Cement and Concrete Research, V. 31, Issue 8, 2001, pp.1203-1206.
14. Young, J. F., and Mindess, S., “Concrete,” Prentice-Hall, New Jersey, 1981, pp.481-500.
15. 黃嘉昌,「自充填混凝土結構行為監測與研究」,國立交通大學,新竹(2001)
16. 混凝土工程委員會,「鋼筋混凝土學」,中國土木水利工程學會,台北(2009)。
17. 陳宏,「後拉法預鑄節塊箱型梁橋預力損失之監測與評估」,國立成功大學,台南(2014)。
18. 林郁,「後拉法預鑄節塊墩柱預力損失之監測與評估」,國立成功大學,台南(2014)。
19. 林聖軒,「預鑄預力混凝土節塊墩柱與箱梁之長期變形監測」,國立成功大學,台南(2015)。
校內:2020-09-04公開