簡易檢索 / 詳目顯示

研究生: 鄧晧翔
TANG, HOU-CHEONG
論文名稱: 預力預鑄節塊墩柱之長期變形研究
Long-Term Deformation of Precast Prestressed Concrete Segmental Pier Columns
指導教授: 方一匡
Fang, I-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 111
中文關鍵詞: 墩柱收縮潛變彈性應變預力損失溫度效應
外文關鍵詞: shrinkage, creep, elastic strain, prestress losses, temperature effect
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究所探討的高雄港聯外道路高架橋之預鑄節塊墩柱為一創新技術工程,為了能深入探討預鑄節塊墩柱之變形行為,本研究於該工程新生路北段第四單元(U4)預鑄墩柱節塊埋設應變計,藉此監測混凝土的變形,並與現有的預測式比較,評估墩柱內有效預力狀況。
    墩柱軸向應變在經歷收縮、施預力、潛變及鋼絞線之鬆馳已達穩定狀態,施加預力階段所增加的彈性應變為224 × 10-6 ~ 250 × 10-6 。於施加預力800天後的應變改變量為325 × 10-6~ 504 × 10-6,預力損失為1057~1413 kgf/cm2,約為初始預力的7.4~9.8%,均在設計容許值以內。因墩柱應變已趨近穩定狀態,後續改變主要為溫度效應之影響。墩柱因受到季節性的大氣溫度變化而產生應變改變量,約為79 × 10-6~ 99 × 10-6的應變改變量。因日夜溫差與直接日照照射所造成的影響約為季節性的大氣溫度變化的一半,為35 × 10-6~ 45 × 10-6的應變改變量。

    The precast prestressed segmental pier column of Kaohsiung Port Viaduct this thesis studying for is an Innovative Technology Engineering. For investigate the deformation behavior of the precast prestressed segmental pier column, we embedded eight strain gauges at each of the segmental pier column in 5-span unit, monitor the deformation of the concrete and compared with prognosticated. Evaluate the effective prestress of the segmental pier column.
    The deformation of the pier column after shrinkage、prestressing、creep of concrete and relaxation of prestressing steel is almost stable. The deformation of the concrete at prestressing had generated 224 × 10-6 ~ 250 × 10-6 elastic strain, and generated
    325 × 10-6~ 504 × 10-6 concrete strain, which is 1057~1413 kgf/cm2 external prestress losses, accounting for 7.4%~9.8% of the initial pretress within 800 days after prestressing. Due to the deformation of the pier column is almost stable, thermal deformation is the main affect for the change of the deformation. The average temperature change between winter and summer form a deformation of the concrete, which is 79 × 10-6 ~ 99 × 10-6 concrete strain. Also, the sunshine and the average temperature change day and night form a deformation of the concrete, which is 35 × 10-6 ~ 45 × 10-6 concrete strain.

    目錄 摘要 I Abstract II 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XVI 符號表 XIX 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究範疇 1 1-3 高雄港聯外高架橋工程簡介 2 第二章 文獻回顧 4 2-1 混凝土之長期應變 4 2-2 混凝土之收縮與潛變應變預測模式 7 2-2-1 混凝土之收縮應變預測模式 7 2-2-2 混凝土之潛變應變預測模式 18 2-3 預力損失 29 第三章 試驗規劃及試驗方法 31 3-1試驗規劃 31 3-1-1 預鑄墩柱節塊 31 3-1-2 應變計安裝位置 33 3-1-3 振弦式應變計與攜帶式溫度量測計 37 3-2預鑄墩柱節塊混凝土應變的監測 39 3-2-1 短期量測 39 3-2-2 長期量測 39 第四章 結果與討論 40 4-1 墩柱預鑄節塊之長期應變監測與估算 40 4-1-1 墩柱節塊之長期應變監測 40 4-1-2 墩柱節塊之長期應變實測值與預測值之比較 51 4-2 墩柱節塊之有效預力之計算與評估 60 4-2-1 施拉預力階段之墩柱混凝土應變分析 60 4-2-2 預力施加後之長期應變分析 66 4-3 墩柱節塊的應變受混凝土溫度影響之評估 74 4-3-1 短期溫度效應 74 4-3-2 長期溫度效應 91 第5章 結論 107 附錄 109 參考文獻 110

    1. ACI Committee 209, “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,” American Concrete Institute, Oct. 1978, pp. 98.
    2. ACI Committee 363, “State-of-the-Art-Report on High-Strength Concrete,” American Concrete Institute, 1997.
    3. American Association of State Highway and Transportation Officials, “AASHTO Standard Specifications for Highway Bridges,” Fifteenth Edition, Washington DC. , 1993.
    4. American Association of State Highway and Transportation Officials, “AASHTO-LRFD Bridge Design Specifications,” Second Edition, Washington DC. , 1998.
    5. ASTM C39, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” American Association of State Highway and Transportation Officials, 1994.
    6. ASTM C469, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” American Association of State Highway and Transportation Officials, 1994.
    7. ASTM C512, “Standard Test Method for Creep of Concrete in Compression,” American Association of State Highway and Transportation Officials, 1994.
    8. CEB-FIP, “Model Code for Concrete Structure,” Comite Euro-Internation du Betion, 1978.
    9. CEB-FIP, “Model Code for Concrete Structure,” Comite Euro-Internation du Betion, 1990.
    10. Lin, T. Y., and Burns, N. H., “Design of Prestressed Concrete Structure,” 3rd Edition in SI units, 1982, 646 pp.

    11. Neville, A. M., “Properties of Concrete,” Piman, London, 1981, 671 pp.
    12. Office of Research, Development, and Technology, Office of Infrastructure, RDT, “Portland Cement Concrete Pavements Research”,2011
    13. Yao, Y., and Li, J., “A Study on Creep and Drying Shrinkage of High Performance Concrete,” Cement and Concrete Research, V. 31, Issue 8, 2001, pp.1203-1206.
    14. Young, J. F., and Mindess, S., “Concrete,” Prentice-Hall, New Jersey, 1981, pp.481-500.
    15. 黃嘉昌,「自充填混凝土結構行為監測與研究」,國立交通大學,新竹(2001)
    16. 混凝土工程委員會,「鋼筋混凝土學」,中國土木水利工程學會,台北(2009)。
    17. 陳宏,「後拉法預鑄節塊箱型梁橋預力損失之監測與評估」,國立成功大學,台南(2014)。
    18. 林郁,「後拉法預鑄節塊墩柱預力損失之監測與評估」,國立成功大學,台南(2014)。
    19. 林聖軒,「預鑄預力混凝土節塊墩柱與箱梁之長期變形監測」,國立成功大學,台南(2015)。

    無法下載圖示 校內:2020-09-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE