簡易檢索 / 詳目顯示

研究生: 吳希炫
Wu, Hsi-Hsuan
論文名稱: 基於執行流程適用於ROS自動駕駛軟體之效能分析工具
Execution Flow Aware Profiling for ROS-based Autonomous Vehicle Software
指導教授: 涂嘉恒
Tu, Chia-Heng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 24
中文關鍵詞: Robot Operating System自動駕駛軟體自動駕駛效能指標執行流程執行順序效能分析工具
外文關鍵詞: Robot Operating System, autonomous software, self-driving, performance characterization, execution flow, execution order, performance tool
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著自動駕駛車變得越來越具有智慧,基於Robot Operating System (ROS)上的自動駕駛軟體,它的複雜性也隨之增加。對於系統設計師來說,快速了解這種複雜軟體的運作行為以及效能,是一個巨大的挑戰,因為目前現有效能分析工具雖然方便,但無法以較為上層的角度,去展示自駕軟體模組之間的交互作用。此篇論文設計了一種新的圖形表示形式──執行流程圖,以表達ROS裡模組間的執行順序,以及展示相關的效能統計數據。我們將這種以執行流程圖為主軸的分析方法應用在自動駕駛軟體──Autoware及Navigation stack裡,得到了令人振奮的結果。

    The complexity of the Robot Operating System (ROS) based autonomous software grows as autonomous vehicles get more intelligent. It is a big challenge for system designers to rapidly understand runtime behaviors and performance of such sophisticated software because the conventional tools are insufficient for characterizing the high-level interactions of the modules within the software. In this thesis, a new graphical representation, execution flow graph, is devised to represent the execution sequences and related performance statistics of the ROS modules. The execution flow aware profiling is applied on the autonomous software, Autoware and Navigation Stack, with encouraging results.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Tables v List of Figures vi Chapter 1. Introduction 1 1.1. Introduction 1 1.2. Thesis Organization 5 Chapter 2. Background and Motivation 6 2.1. Background: ROS for Autonomous Vehicles 6 2.2. Motivation and Contribution 7 Chapter 3. Execution Flow Aware Profiling 12 3.1. Overview 12 3.2. Application-level Execution Flow Analysis 12 3.3. Process-level Application- and System-wide Profiling 14 3.4. Function-level Performance Statistics 16 Chapter 4. Experimental Results 18 4.1. Experimental Setup 18 4.2. Case Study on Self-driving Car 19 4.3. Case Study on Automated Guided Vehicle 20 Chapter 5. Conclusion 23 References 24

    [1] Frances E. Allen. Control flow analysis. In Proc. of ACM Symposium on Compiler optimization, pages 1–19, July 1970.
    [2] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya Takeda, and Tsuyoshi Hamada. An open approach to autonomous vehicles. 35:60–68, December 2015. [3] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato Hirabayashi, Yuki Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya Azumi. Autoware on board: Enabling autonomous vehicles with embedded systems. In ICCPS, pages 287–296, April 2018.
    [4] Kernel.org. perf: Linux profiling with performance counters, October 2019.
    [5] LG Electronics. LGSVL Simulator, October 2019.
    [6] Edward S Lowry and Cleburne W Medlock. Object code optimization. Commun. ACM, 12:13–22, January 1969.
    [7] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and Kurt Konolige. The office marathon: Robust navigation in an indoor office environment. In ICRA, pages 300–307, May 2010.
    [8] Open Source Robotics Foundation. How to profile roslaunch nodes, October 2019.
    [9] Python Software Foundation. The python profilers, October 2019.
    [10] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. Ros: an open-source robot operating system. In ICRA, page 5, May 2009.
    [11] Dirk Thomas. Ros wiki: rqt_graph, October 2019.
    [12] Lijun Wei, Cindy Cappelle, and Yassine Ruichek. Camera/laser/gps fusion method for vehicle positioning under extended nis-based sensor validation. 62:3110–3122, November 2013.

    無法下載圖示 校內:2025-07-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE