簡易檢索 / 詳目顯示

研究生: 蘇信嘉
Su, Shin-Jia
論文名稱: 以成效試驗方法探討電弧爐氧化碴粗粒料多孔性瀝青混凝土之力學特性
Mechanical Performance Evaluation of EAF Oxidizing Slag Coarse Aggregate in Porous Asphalt Concrete
指導教授: 楊士賢
Yang, Shih-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 94
中文關鍵詞: 熱島效應多孔隙瀝青混凝土氧化碴動態彈性模數車轍水敏性抗裂性水侵害綜合力學成效評比
外文關鍵詞: heat island effect, porous asphalt concrete, EAF Oxidizing Slag, dynamic elastic modulus, rutting, water sensitivity, cracking, water damage, comprehensive mechanical evaluation
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去十年中,因為全球溫度升高和極端氣候嚴重地影響了人們的生活,為了解決熱島問題,需要找到能夠有效散熱的鋪面型態,而透水性鋪面則是很好的選擇,除了能夠加速熱能排散,還能有良好的抗噪效果、管理路面徑流、抗滑與維持駕駛人行車安全之功能,然而PAC用於道路中作為結構載重層的材料,外界一般對其力學方面成效有所顧慮,此外在過去瀝青混凝土成效性能未有基於材料破壞力學之試驗方法量化其關鍵破壞模式,因此在本研究目的在利用與瀝青混凝土材料破壞機理關聯之成效試驗方法,評估氧化碴多孔隙瀝青混凝土在車轍、裂隙與水侵害三項主要材料破壞模式之成效。試驗結果發現,在動態彈性模數性質試驗中發現加入爐石能有效的提高瀝青混凝土強度值;在車轍(Rutting)的兩項試驗中,增加氧化碴添加量也夠有效的提高試體之抗車轍性值,添加量比例越高,抗車轍性越佳;而斷裂能試驗使用了伊利諾韌性指數試驗(I-FIT)和混凝土瀝青裂縫間接開裂試驗(IDEAL-CT)兩種試驗,孔隙率提高有助於抗裂性能的增加;而氧化碴添加量及瀝青強度的提高則是使抗裂性降低;在水侵害性能成效中,可以得知氧化碴的添加量有助於補足多孔隙瀝青因與外在環境面積大,而容易受到水侵害的劣勢,使水侵害影響降低與密集配相近。綜觀上述由各性能指標,建構出2D象限成效圖與3D成效立體圖,以判別與呈現不同種瀝青混凝土材料成效的優劣,由最終結果可以知道氧化碴有效的改善了綜合成效評比。

    The global temperature increase and extreme climate have significantly influenced human life in the past decade. In order to solve the heat island problem, it is necessary to find a pavement that can dissipate heat effectively. Water-permeable pavement is a good choice. In addition to accelerating heat dissipation, it also has a good anti-noise effect, manages road runoff, anti-skid and maintains the functions of driving safety. However, PAC is used as a material for structural load-bearing layers in roads, and the outside generally has concerns about its mechanical performance. In addition, the effectiveness and performance of asphalt concrete did not have a test method based on material failure mechanics to quantify its failure mode in the past. Therefore, the purpose of this research is to use the effectiveness test method related to the failure mechanism of asphalt concrete materials to evaluate the effectiveness of the three main material failure modes of rutting, cracks and moisture damage.
    The test results found that in the dynamic elastic modulus test, the addition of EAF oxidizing slag can effectively increase the strength of asphalt concrete; in the two tests of rutting, increasing the amount of EAF oxidizing slag can also effectively increase the resistance of rutting value, the higher proportion of addition, the better the rutting resistance; and the fracture energy test uses Illinois Flexible Index Test (I-FIT) and Indirect Tension Asphalt Cracking Test (IDEAL-CT).The increase of porosity contributes to the increase of crack resistance; while the addition of EAF oxidizing slag and the increase of asphalt strength reduce the crack resistance; in the effect of moisture damage performance, it can be known that the addition of EAF oxidizing slag helps to make up Porous asphalt is vulnerable to water damage due to its large area with the external environment, which reduces the impact of water damage and is similar to the density.
    Based on the above performance indicators, a 2D quadrant performace map and a 3D performace stereo map are constructed to identify and present the effectiveness of different asphalt concrete materials. From the final result, it can be known that the oxidation ballast has effectively improved the overall effectiveness evaluation.

    目錄 摘要 i ABSTRACT ii 致謝 xviii 目錄 xix 表目錄 xxii 圖目錄 xxiii 第一章緒論 1 1.1. 研究背景與動機 1 1.2. 研究目的 2 1.3. 研究範圍及架構 3 第二章 文獻回顧 5 2.1. 排水性瀝青混凝土概述 5 2.2. 多孔隙瀝青混凝土國內外的應用 6 2.3. 電弧爐氧化碴基本介紹 7 2.3.1. 來源與製程 7 2.3.2. 化學性質 8 2.3.3. 物理性質 8 2.3.4. 國內外爐石應用於瀝青混凝土之現況 9 2.4. 動態模數(Dynamic modulus)試驗 10 2.4.1. 瀝青混凝土黏彈力學性質及理論 10 2.4.2. 動態模數主曲線分析 12 2.4.3. 時間-溫度疊加原理 13 2.5. 瀝青混凝土車轍成效試驗 16 2.5.1. 重複載重永久變形試驗(Flow Number Test) 16 2.5.2. 堡輪跡試驗(Hamburg Wheel-Tracking Test) 18 2.6. 裂縫試驗(Cracking Test) 21 2.6.1. 瀝青混凝土樑彎曲疲勞試驗(Bending Beam Fatigue Test) 21 2.6.2. 瀝青混凝土半圓彎曲試驗(Semi-Circular Bending Test) 23 2.6.3. 瀝青混凝土裂縫間接開裂試驗(IDEAL-CT) 24 2.6.4. 德州抗裂試驗(Texas Overlay Test) 26 2.6.5. 裂縫實驗分析 27 2.7. 平衡配比設計(BMD) 28 2.8. 水侵害試驗(moisture damage) 32 2.8.1 水侵害原因 32 2.8.2 乾溼HWT實驗條件 32 2.8.3 在濕HWT測試中驗證水分損壞 33 第三章 研究計畫與試驗方法 35 3.1. 研究流程 35 3.2. 試驗材料 37 3.2.1. 混和料介紹 37 3.2.2. 粒料與瀝青基本物性試驗 37 3.2.3. 多孔隙瀝青混凝土配合設計 39 3.2.4. 室內滲透係數實驗 41 3.3. 動態彈性模數試驗 43 3.3.1. 動態模數試體製作 43 3.3.2. 試驗步驟與方法 44 3.3.3. 動態模數之計算 45 3.3.4. 動態模數主曲線模型建構 46 3.4. 動態反覆載重流數試驗(FNT) 47 3.4.1. 試驗步驟與方法 49 3.4.2. Flow number試驗計算 49 3.5. 漢堡車轍輪機試驗(HWTT) 51 3.5.1. 試驗步驟與方法 51 3.5.2. 計算與分析 52 3.6. 伊利諾韌性指數試驗(I-FIT) 55 3.6.1. 試驗步驟與方法 55 3.6.2. 伊利諾韌性指數計算 56 3.7. 間接張力瀝青開裂試驗(IDEAL-CT) 57 3.7.1. 試驗步驟與方法 57 3.7.2. 計算與分析方法 58 3.8. 水侵害成效指標(Moisture Damage Index, MDI) 60 第四章試驗結果與討論 61 4.1. 動態模數(DM) 61 4.2. 瀝青混凝土車轍成效試驗 64 4.2.1 流動數(Flow Number, FN) 64 4.2.2. 漢堡輪跡車轍成效試驗(HWTT) 68 4.3. 瀝青混凝土裂縫成效試驗 72 4.3.1. 伊利諾韌性試驗 (I-FIT)與伊利諾韌性指數(Flexibility Index) 72 4.3.2. 瀝青混凝土間接張力開裂試驗(IDEAL-CT)與開裂容忍指標 (CT Index) 75 4.4. 瀝青混凝土水侵害成效試驗 78 4.4.1. 基於HWTT之潛變斜率水侵害指標(MDICP) 78 4.4.2. 基於HPI之水侵害指標(MDIHPI) 81 4.5. 瀝青混凝土成效象限圖 82 第五章 結論與建議 86 5.1. 結論 86 5.2. 後續研究方向與建議 88 第六章 參考文獻 89

    英文文獻

    1.Keith Rahn, Michael Heinand, Mark Dougherty, John Gandy, (2015)“The Contribution of Pavements to Urban Heat Islands”, ASC Annual international conference proceedings 51th.
    2.Hardiman, H., 2004. Application of packing theory on grading design for porous asphalt mixtures. Civil Engineering Dimension, 6 (2), 57–63. Hashin, Z., 1970. Complex moduli of viscoelastic composites—i. General
    3.Mansour, T.N. and Putman, B.J., 2013. Influence of aggregate gradation on the performance properties of porous asphalt mixtures. Journal of Materials in Civil Engineering, 25 (2), 281–288.
    4.Hagos, E.T. 2008. The effect of aging on bitumen properties of porous asphalt concrete. PhD thesis, Delft University of Technology, The Netherlands.
    5.WU Shao-peng2006.Effect of fiber types on relevant properties of porous asphalt.
    6.Xiaowei Wang 2018.Rutting resistance of porous asphalt mixture under coupled conditions of high temperature and rainfall
    7.Fujie Zhou, 2017 Development of an IDEAL cracking test for asphalt mix design and QC/QA
    8.Chuanqi Yan et al 2020 Comparison between SCB-IFIT, un-notched SCB-IFIT and IDEAL-CT for measuring cracking resistance of asphalt mixtures.
    9.Peter E. Sebaaly et al.2017 A comprehensive evaluation of moisture damage of asphalt concrete mixtures.
    10.Christensen, D.W., and Anderson, D.A., “Interpretation of Dynamic Mechanical Test Data For Paving Grade Asphalt Cements”Journal of the Associa tion of Asphalt Paving Technologists, Vol.61,pp.67 116 1992 。
    11.Pellinen, T.K.,Witczak, M.W., and Bonaquist, R.F.,“Asphalt Mix Master Curve Construction Using Sigmoidal Fitting Function with Non Linear Least Squares Optimization”Proceedings of the Pavement Mechanics Symposium at the 15th ASCE Engineering Mechanics Conference(EM2002). Columbia University, New York, NY.
    12.Pagen, C.A.,“A study of the temperature dependent rheological characteristics of asphaltic concrete”H ighway Research Report,No.158,pp.116 143 1967 。
    13.Anderson, D.A., Christensen, D.W. and Bahia, H.“Physical properties of asphalt cement and the development of performance related specification,”Journal of the Association of Asphalt Paving Technologists, Vol.6 0, pp.437 475 1911 。
    14.Park, S.W ,Kim,Y.R and Schapery , R.A. 1996. “ A Viscoelastic Continuum Damage Model and Its Application to Uniaxial Behavior of Asphalt Concrete” Mechanics of Matherials, Vol. 24, pp.241 255.
    15.Zhang et al,2013 Comparison of flow number, dynamic modulus, and repeated load tests for evaluation of HMA permanent deformation.
    16.Apeagyei and Diefenderfer,2011 Rutting resistance of asphalt concrete mixtures that contain recycled asphalt pavement.
    17.Yildirim et al 2007 Field performance comparison of asphalt crack-filling materials: hot pour versus cold pour.
    18.Lu和Harvey 2006a The personality construct of hardiness, III: Relationships with repression, innovativeness, authoritarianism, and performance.
    19.Aschenbrener 1995; Aschenbrener 1994 Evaluation of Hamburg wheel-tracking device to predict moisture damage in hot-mix asphalt.
    20.Lubinda F.Walubita 2018 et al The Hamburg Rutting Test (HWTT) alternative data analysis methods and HMA screening criteria.
    21.Kennedy和Ping 1991 AN EVALUATION OF EFFECTIVENESS OF ANTISTRIPPING ADDITIVES IN PROTECTING ASPHALT MIXTURES FROM MOISTURE DAMAGE (WITH DISCUSSION).
    22.D. Cheng, D.N.Little, R.L.Lytton, J.C. Holste, Surface energy measurement of asphalt and its application to predicting fatigue and healing in asphalt mixtures, Transp. Res. Rec. 1810 (2002) 44–53.
    23.R. Moraes, R. Velasquez, H. Bahia, Measuring Effect of Moisture on Asphalt- Aggregate Bond with The Bitumen Bond strength Test, Journal of the Transportation Research Board 2209, Transportation Research Board, National Research Council, Washington, D.C., 2011, pp. 70–81.
    24.Y.R. Kim, D.N. Little, R.L. Lytton, Fatigue and Healing Characterization of Asphalt Mixtures, J. Mater. Civ. Eng. (2002).
    25.A.K. Apeagyeia, J.R.A. Grenfella, G.D. Airey2014 , Moisture-induced strength degradation of aggregate-asphalt mastic bonds, Road Mater. Pavement Des. 15 (Suppl. 1) (2014) 239–262.
    26.American Association of State Highways and Transportation Officials (AASHTO). (2014). “Standard method of test for determining the fatigue life of compacted hot-mix asphalt (HMA) subjected to repeated flexural bending.” AASHTO T321-14, Washington, DC.
    27.ASTM D7460. (2010). Standard test method for determining fatigue failure of compacted asphalt concrete subjected to repeated flexural bending.
    28.Van Dijk, W., Moreaud, H., Quedeville, A., & Uge, P. (1972, September). The fatigue of bitumen and bituminous mixes. In Presented at the Third International Conference on the Structural Design of Asphalt Pavements, Grosvenor House, Park Lane, London, England, Sept. 11-15, 1972. (Vol. 1, No. Proceeding).
    29.Rowe, G. M., & Bouldin, M. G. (2000, September). Improved techniques to evaluate the fatigue resistance of asphaltic mixtures. In 2nd Eurasphalt & Eurobitume Congress Barcelona (Vol. 2000).
    30.Artamendi, I., & Khalid, H. (2005). Characterization of fatigue damage for paving asphaltic materials. Fatigue & fracture of engineering materials & structures, 28(12), 1113-1118.
    31.Krans, R. L., Tolman, F., & Van de Ven, M. F. C. (1996, September). Semi-circular bending test: a practical crack growth test using asphalt concrete cores. In RILEM proceedings (pp. 123-132). Chapman & Hall.
    32.ASTM D8044. (2016). Standard Test Method for Evaluation of Asphalt Mixture Cracking Resistance using the Semi-Circular Bend Test (SCB) at Intermediate Temperatures.
    33.Majidzadeh, K., Kauffmann, E. M., & Ramsamooj, D. V. (1971). Application of fracture mechanics in the analysis of pavement fatigue. In Association of Asphalt Paving Technoogists Proc (Vol. 40).
    34.Monismith, C. L., & Salam, Y. M. (1973). Distress characteristics of asphalt concrete mixes. In Association of Asphalt Paving Technologists Proc (Vol. 42).
    35.Mull, M. A., Othman, A., & Mohammad, L. (2005). Fatigue crack propagation analysis of chemically modified crumb rubber–asphalt mixtures. Journal of Elastomers & Plastics, 37(1), 73-87.
    36.Mohammad, L. N., Mull-Aglan, M. A., & Othman, A. (2006). Fatigue crack growth analysis of hot-mix asphalt employing semicircular notched bend specimen (No. 06-1665).
    37.New explicit microplane model for concrete: theoretical aspects and numerical implementation 1988 Development of an IDEAL Cracking Test for Asphalt Mix Design, Quality Control and Quality Assurance Final Report for NCHRP IDEA Project 195 2018
    38.F. P. Germann and R. L. Lytton. Methodology for Predicting the Reflective Cracking Life of Asphalt Concrete Overlays[R].TEXAS:TEXAS A&M University,1979.
    39.Zhou Fujie, Tom Scullion. Overlay Tester: A Simple Performance Test for Thermal Reflective Cracking (With Discussion and Closure) [J].Association of Asphalt Paving Technologists,2005(74):443-484.
    40.Designation, T. (2014). Tex-248-F. Overlay Test. Construction Division,Texas Department of Transportation.
    41.Zhou et al 2017 Development of an IDEAL cracking test for asphalt mix design and QC/QA
    42.TxDOT (Texas Department of Transport) 2004. Standard Specifications for Construction and Maintenance of Highways, Streets, and Bridges. Austin, Texas: TxDOT.
    43.Al-Qadi, I. L., Ozer, H., Lambros, J., El Khatib, A., Singhvi, P., Khan, T., ... & Doll, B. (2015). Testing protocols to ensure performance of high asphalt binder replacement mixes using RAP and RAS. Illinois Center for Transportation/Illinois Department of Transportation.
    44.AASHTO, T. 124.(2016). AASHTO TP 124: Standard Method of Test for Determining the Fracture Potential of Asphalt Mixtures Using SemicircularBend Geometry (SCB) at Intermediate Temperature.
    45.Lubinda F. Walubita et al(2018) The Hamburg Rutting Test (HWTT) alternative data analysis methods and HMA screening criteria
    46.NCHRP IDEA Project 195
    47.David Newcomb and Fujie Zhou(2018 )Balanced Design of Asphalt Mixtures
    48.FABRICIO LEIVA (2015)Balance Your Mix Design for Asphalt
    49.Chaturabong(2017)The evaluation of relative effect of moisture in Hamburg wheel tracking test
    50.Illinois Test Procedure 405,January 1, 2016
    51. Zhou(2019)Development of an IDEAL Cracking Test for Asphalt Mix Design and QC/QA
    52.NGUYỄN (2020) INVESTIGATION OF DIFFERENT DATA ANALYSIS METHODS AND PERFORMANCE PARAMETERS OF HAMBURG WHEEL TRACKING TEST

    中文文獻
    1.王耀寬(2008)轉爐石對多孔隙瀝青混凝土之影響碩士論文,成功大學土木工程研究所。
    2.財團法人台灣營建研究院(2017),電弧爐煉鋼氧化碴瀝青混凝土鋪面試行使用手冊。
    3.徐敏晃、涂哲維(2016),電弧爐煉鋼爐碴在利用與管理新訊,中國土木水利學會,第43卷,第4期,第12~16頁。
    4.中華鋪面工程學會,2007
    5.中華鋪面工程學會,2004b
    6.黃博仁,「排水性瀝青混凝土」,交通部公路總局材料試驗所,2013

    無法下載圖示 校內:2026-01-18公開
    校外:2026-01-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE