研究生: |
施榮亮 Shi, Rong-Liang |
---|---|
論文名稱: |
以液態旋塗法之p型氧化鎳薄膜作為閘極氧化層對氮化鋁鎵/氮化鎵高電子遷移率電晶體臨界電壓之影響 The influence of p-type NiOx gate oxide by solution process on threshold voltage in AlGaN/GaN HEMTs |
指導教授: |
蘇炎坤
Su, Yan-Kuin 盧達生 Lu, Darsen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 氧化鎳 、氮化鎵 、旋轉塗佈 、高電子遷移率電晶體 |
外文關鍵詞: | Nickel oxide, GaN, spin coating, High electron mobility transistor (HEMT) |
相關次數: | 點閱:118 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的是探討運用p型材料氧化鎳作為閘極氧化層,使氮化鋁鎵/氮化鎵高電子遷移率電晶體達到增強型。藉由液態旋塗氧化鎳薄膜與後退火處理,可達成高電洞濃度之薄膜,p型氧化鎳薄膜在此研究扮演抬升傳導帶高於費米能階的功用,高電洞濃度的薄膜可使空乏型的高電子遷移率電晶體變成增強型。
氧化鎳,是一個低毒性、低成本、且有極佳的化學穩定性、光學性質以及電性,被發表為一個p型半導體,為了更了解氧化鎳薄膜,表面粗糙度分析、晶向分析、X光光電子譜儀分析等將在論文中探討。其中,使用了兩種合成氧化鎳的配方,並對溶液進行微調,並比較其特性。氧化鎳之功函數、厚度以及電洞濃度會影響元件特性。其中以晶向分析最為重要,塗佈之氧化鎳薄膜在氧氣環境下高溫退火,能將晶向強度(200)與晶向(111)增加,原因為鎳空缺與氧離子增加,使電洞濃度上升,最後發現不同溫度的退火會影響晶向強度,隨著溫度增加,晶向強度增強。接著再利用X光光電子能譜儀分析,確保氧化鎳薄膜能表現出p型半導體的特性。另外,微調之溶液退火之後的表面粗糙度雖從0.515 nm 提升至4.05 nm 但依然是相當可接受的應用範圍。
之後,將此高電洞濃度氧化鎳薄膜放於氮化鋁鎵/氮化鎵高電子遷移率電晶體之閘極下方,將之與傳統元件比較,臨界電壓從-4 V偏移至-2.15 V,閘極漏電流改善了102。這個新方法只使用便宜的材料與簡單的製程便可對氮化鋁鎵/氮化鎵高電子遷移率電晶體做出往正偏移的臨界電壓,使臨界電壓偏移了1.85 V。
The main purpose of this work is to explore the use of p-type material nickel oxide as the gate oxide layer to make AlGaN/GaN high-electron mobility transistor enhanced. The p-type nickel oxide thin film that can achieve a high hole concentration by solution spin-coating and post-annealing is considered to function as lifts up the conduction band above the Fermi level. NiOx thin films with high hole concentration can change the HEMTs operation mode from depletion to enhancement mode.
Nickel oxide, a low toxicity, low cost, excellent chemical stability, optical properties and electrical properties, was published as a p-type semiconductor. In order to realize the nickel oxide film, surface roughness analysis, x-ray diffraction, x-ray photoelectron spectroscopy will be discussed in this work. Furthermore, two solution of synthetic nickel oxides were used, and the solution was fine-tuning and its characteristics were compared. The work function, thickness, and hole concentration of nickel oxide can affect characteristics of HEMTs. Furthermore, the crystal orientation analysis is the most important here. The spin coated nickel oxide thin film is annealed at high temperatures in an oxygen ambient and this can increase the orientation strength (200) and (111) of nickel oxide due to the increase of nickel vacancies and oxygen ions so increase the hole concentration. Finally annealing at different temperatures was found will affect the strength of the crystal orientation, as the temperature increases, the orientation strength increases. Then we used X-ray photoelectron spectroscopy to ensure that the nickel oxide film can exhibit p-type semiconductor characteristics. In addition, although the surface roughness after annealing was increased from 0.515 nm to 4.05 nm, it is still a quite acceptable range for application.
Afterward, this high-hole-concentration nickel oxide film was inserted under the gate of AlGaN/GaN high-electron mobility transistor. Compared with the conventional device, the threshold voltage was shifted from -4 V to -2.15 V, the gate leakage current was improved by 102. This new method used cheap materials and a simple process to make a positive shift of 1.85 V in threshold voltage of AlGaN/GaN high electron mobility transistors.
[1] T. P. Chow, MRS Symposium No. 622 Materials Research Society, No.
T1.1.1.Pittsburgh, 2000,
[2] Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse, and J. M. Redwing, “High voltage (450 V) GaN schottky rectifiers,” Appl. Phys. Lett., vol. 74, pp. 1266-1268, 1999.
[3] M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, “Monte Carlo calculation of the velocity-field relationship for gallium nitride,” Appl. Phys. Lett., vol. 26, pp. 625-627, 1975.
[4] U. V. Bhapkar and M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of wurtzite GaN,” J. Appl. Phys., vol. 82, pp. 1649-1655, 1997.
[5] R. Gaska, J. W. Yang, A. Osinsky, Q. chen, M. A. Khan, A. O. Orlov, G. L. Snider, and
M. S. Shur, “Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates,” Appl. Phys. Lett., vol. 72, pp. 707-709, 1998.
[6] http://www.semiconductor-today.com/news_items/2014/MAY/YOLE_280514.shtml
[7] http://www.yole.fr/STATUS_GAN_MARKET_TECHNOLOGY_TRENDS.aspx#.Wvv
nQqSFOUk
[8] M. Ishiguro, K. Ikeda, M. Mizuno, M. Iwaya, T. Takeuchi, S. Kamiyama and I. Akasaki “Control of the Detection Wavelength in AlGaN/GaN-Based Hetero-Field- Effect-Transistor Photosensors” Jpn. J. Appl. Phys. , Vol. 52, Num.8S, May, 2013.
[9] N. Tipirneni, A. Koudymov, V. Adivarahan, J. Yang, G. Simin, and M. Asif Khan, “The 1.6-kV AlGaN/GaN HFETs” IEEE Electron Device Lett., Vol. 27, No. 9, Sep 2006
[10] T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “AlGaN/GaN High Electron Mobility Transistors With InGaN Back-Barriers” IEEE Electron Device Lett., Vol. 27, No. 1, Jan 2006.
[11] J. W. Johnson, E. L. Piner, A. Vescan, R. Therrien, P. Rajagopal, J. C. Roberts, J. D. Brown, S. Singhal, and K. J. Linthicum ” 12 W/mm AlGaN–GaN HFETs on Silicon
Substrates” IEEE Electron Device Lett., Vol. 25, No. 7, July 2004
[12] S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, and U. K. Mishra “Power Performance of AlGaN–GaN HEMTs Grown on SiC by Plasma-Assisted
MBE” IEEE Electron Device Lett., Vol. 25, No. 5, May 2004
[13] S. Rajan, H. Xing, S. DenBaars, U. K. Mishra and D. Jena “AlGaN/GaN polarizationdoped field-effect transistor for microwave power applications” Appl. Phys. Lett. 84, 1591, 2004
[14] Yuxia Feng, Hongyuan Wei , Shaoyan Yang, Zhen Chen, Lianshan Wang, Susu Kong, Guijuan Zhao& Xianglin Liu, “Competitive growth mechanisms of AlN on Si (111) by MOVPE” Scientific report, 18 Sep 2014
[15] Brianna s. eller, Jialing Yang, Robert J. Nemanich, ” Polarization Effects of GaN and AlGaN: Polarization Bound Charge, Band Bending, and Electronic Surface States” Journal of Electronic Materials, Vol. 43, No 12, 2014
[16] http://uef.fei.stuba.sk/moodle/mod/book/view.php?id=7920&chapterid=63
[1] T. Oka and T. Nozawa, BAlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications, Electron Device Lett., vol. 29, pp. 668–670, 2008.
[2] C. Yi, R. Wang, W. Huang, W. C. W. Tang, K. M. Lau, and K. J. Chen, "Reliability of Enhancement-mode AlGaN/GaN HEMTs Fabricated by Fluorine Plasma 23 Treatment," in 2007 IEEE International Electron Devices Meeting, 2007, pp. 389- 392.
[3] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: From depletion mode to enhancement mode,” IEEE Trans. Electron. Devices, vol. 53, no. 9, pp. 2207–2215, Sep. 2006.
[4] J. J. Freedsman, T. Kubo, and T. Egawa “High Drain Current Density E-Mode Al2O3/AlGaN/GaN MOS-HEMT on Si with Enhanced Power Device Figure-of-Merit
(4×108.V2.Ω−1cm−2)” IEEE Trans. Electron Devices, vol. 60, no. 10, Oct 2013.
[5] L. Yuan, H. Chen, and K. J. Chen, "Normally Off AlGaN/GaN Metal—2DEG Tunnel-Junction Field-Effect Transistors," IEEE Electron Device Letters, vol. 32, pp.
303-305, 2011.
[6] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, et al., "Gate
Injection Transistor (GIT) —A Normally-Off AlGaN/GaN Power Transistor Using
Conductivity Modulation," IEEE Transactions on Electron Devices, vol. 54, pp.
3393-3399, 2007.
[7] J. H Lin, S. J Huang, C. S Lai, and Y. K Su,” Normally-off AlGaN/GaN high-electron
mobility transistor on Si(111) by recessed gate and fluorine plasma treatment” Jpn. J. Appl.Phys. 55, 01AD05, 2016.
[8] T. Palacios, C. S. Suh, A. Chakraborty, S. Keller, S. P. DenBaars, and U. K. Mishra,
“High-Performance E-Mode AlGaN/GaN HEMTs”IEEE Electron Device Lett. 27, 6,
2006.
[9] K. S. Im, J. B. Ha, K. W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm, and J. H. Lee, IEEE
Electron Device Lett. 31, 3, 2010.
[10] H. Sato, T. Minami, S. Takata, and T. Yamada, “Transparent conducting p-type NiO thin film prepared magnetron sputtering” Thin. Soli. Film, vol. 236, pp. 27-31, Dec 1993.
[11] T. Lalinský, G. Vanko, M. Vallo, E. Dobročka, I. Rýger, and A. Vincze “AlGaN/GaN high electron mobility transistors with nickel oxide based gates formed by high temperature oxidation” Appl. Phys. Lett., vol. 100, no. 9, pp. 092105, May 2012.
[12] S. J. Huang, C. W. Chou, Y. K. Su, J. H. Lin, H. C. Yu, D. L. Chen, J. L. Ruan, ” Achievement of normally off AlGaN/GaN high electron mobility transistor with p-NiOx capping layer by sputtering and post-annealing” Appl. Surf. Sci. 401 (2017) 373
[1] http://www.wisegeek.com/what-is-furnace-annealing.htm
[2] https://en.wikipedia.org/wiki/Annealing_(metallurgy)
[3] H. L. Chen and Y. S. Yang, “Effect of crystallographic orientations on electrical properties of sputter-deposited nickel oxide thin films” Thin Soli Films, Vol. 516, pp. 5509, 2008.
[4] S. M. Meybodi, S. A. Hosseini, M. Rezaee, S. K. Sadrnezhaad, and D. Mohammadyani, “Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method” Ultr. Sono, vol. 19, pp. 841–845, Jul 2012.
[5] W. L. Jang, Y. M. Lu, W. S. Hwang, T. Li Hsiung, and H. P. Wang “Point defects in sputtered NiO films” Appl. Phys. Lett , vol. 94, no. 6, pp. 062103, Mar 2009.
[6] S. J. Huang, C. W. Chou, Y. K. Su, J. H. Lin, H. C. Yu, D. L. Chen, J. L. Ruan. “Achievement of normally-off AlGaN/GaN high-electron mobility transistor with p-NiOx capping layer by sputtering and post-annealing” Appl. Surf. Sci. 401 (2017) 373.
[1] M. H. Rahman and M. R. Ahmad, "Electrical characterizations of electrodes microfluidics system for microbio object analysis," in 2013 IEEE International Conference on Control System, Computing and Engineering, 2013, pp. 582-585.
[1] Z. Dong, J. Wanga, C.P. Wena, D. Gong, Y. Li, M. Yu, Y. Hao, F. Xu, B. Shen, and Y. Wang, “High breakdown AlGaN/GaN MOSHEMT with thermal oxidized Ni/Ti as gate insulator” Soli. Stat. Elec. Vol. 54, pp. 1339–1342, 2010.
[2] F. Roccaforte, G. Greco, P. Fiorenza, V. Raineri, G. Malandrino, and R. L. Nigro, “EpitaxialNiO gate dielectric on AlGaN/GaN heterostructures” Appl. Phys. Lett. Vol. 100, pp. 063511, 2012.
[3] Y. S. Kim, M. W. Ha, O. G. Seok, W. J. An and M. k. Han, “AlGaN/GaN HEMTs employing NiOx-based Schottky contact and floating metal ring for high breakdown voltage”. Int. Symp. Power Smicond. Devices and Ics, pp. 3-7, 2012.
[4] Young-Shil Kim,“Improvement of Breakdown Characteristics in AlGaN/GaN Power HEMTs “, PhD thesis, College of Engineering, Seoul National University