| 研究生: |
李冠增 Li, Kuan-Tseng |
|---|---|
| 論文名稱: |
懸臂橋樑作業之生產力估計 Estimating Productivity of Cantilevel Constructing Bridge Activities |
| 指導教授: |
潘南飛
Pan, Nang-Fei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 懸臂工法施工作業 、作業工率(生產力) 、工期 、模糊迴歸分析 |
| 外文關鍵詞: | cantilever construction operation, operation productivity(unit rate), duration, Fuzzy Regression Analysis |
| 相關次數: | 點閱:118 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往評估營建生產力之模式,由文獻發現有許多是應用多元線性迴歸法來分析,但是多元線性迴歸法對某些具有模(含)糊性質的生產力與影響因子,例如:生產力很低、低、普通、高或很高;天候很差、普通或很好等,需經由觀測人員或專家主觀的語意評估,此類模糊資訊或模糊變數的問題,卻無法有效處理。相反地,模糊迴歸分析已被認可克服此種類問題的有效方法。
本研究為尋求解決模糊資訊或模糊變數的問題,俾能提供更準確地估計工程作業之生產力,透過文獻回顧、專家訪談及研究推論後,再參考Pan et al.及本研究提出之模式以國道2號高速公路拓寬工程工程第H21A標為案例,建立以節塊懸臂工法施工作業及橋樑之墩柱基礎開挖、鋼筋綁紮及模板組立等生產力之模糊迴歸式。本研究模式的預估結果可建立作業生產力與其影響因子之關係式,協助進度管理者更合理、準確地估計作業生產力與需時;此外,由迴歸模式之係數正負號與數據大小,可瞭解變數對於作業工率之影響及其影響層面大小,進而回饋於改善與管控的重要影響變數。
有效而正確的生產力計算,除可提供規劃及設計單位對工期及成本之預估外,亦可做為業界於評估下包團隊工作效率之依據及參考。
In the past technical literature, modes of estimating construction work rate have been found analyzed by applying Multi Factor Line Regression Method. However, Multi Factor Line Regression Method can not effectively deal with productivity and impact factors with fuzzy properties. Fussy properties are such as very low, low or average unit rate and high or very high unit rate; poor, average, or good weather; expressions that need subjective semantic evaluations by observers, specialists, and problems with fuzzy information and fuzzy variables. On the contrary, Fuzzy Regression Analysis has been recognized to effectively overcome the problems just mentioned.
This study aims to seek for solutions for fuzzy information and fuzzy variables in order to provide more accurate estimation of construction operation unit rate. Through reviews of technical literature, interviews with experts and research inference, and reference to Pan et al. this study also brought up National Highway No.2 widening project tendering number H21A, H31, H61 as examples. In these constructions, the Fuzzy regression were established for the work rate of the cantilever construction with incremental launching method, foundation excavation of the bridge pier column, steel banding and template assembly. The expected results of this study may establish a correlation between the operation productivity and impact factors, so as to assist the schedule manager more sensibly, more accurately estimate operation unit rate and time demanded. Besides, from the coefficient signs and values of Regression model, variables’ effect on operation unit rate and the scope of the affection may be understood, and furthermore, be fedback to the important variables on improvement and control.
Effective and correct productivity calculation provides not only planning and design units an accurate estimation of costs and schedule but also the basis and reference for construction industry while estimating the teamwork efficiency of a downstream constructor.
一、 英文文獻(A~Z)
1. Ayyub, B.M. and Halder, A.,” Project scheduling using fuzzy set concepts”, Journal of Construction Engineering and Management, ASCE, Vol. 110, No. 2, pp.189-204,1984.
2. Crandall, K.C. and Woolery, J.C., ”Schedule Development under stochastic scheduling”, Journal of Construction Engineering and Management, ASCE, Vol. 108, No. 2, pp. 321-329,1982.
3. Chao, L.C. and Skibniewski, M.J., “Estimating construction productivity neural-network-based approach“, ASCE, Vol.8, No.2, pp.234-251, 1994.
4. Chang, P. T. and Lee, E.S., 1996 “A generalized fuzzy weighted least-squares regression”, Fuzzy sets and systems, Vol. 82, pp. 289-298.
5. Chen, S.J. and Wang, C. L., “Fuzzy multiple attribute decision making methods and applications.” Springer-Verlag, New York, 1992.
6. Chang, Y.H. and Ayyub, B.M., “Fuzzy regression model- a comparative assessment”, Fuzzy Sets and Systems, Vol. 119, pp.187-203, 2001.
7. Chang, Y.H., “Hybrid fuzzy least-squares regression analysis and its reliability measures”, Fuzzy Sets and Systems, Vol. 119, pp. 225-246,2001.
8. Diaz, C.F. and Hadipriono, F.C., “Nondeterministic networking methods”, Journal of Construction Engineering and Management, ASCE,Vol. 119, No. 1, March 1993, pp.40-57, 1993.
9. Diamond, P., Fuzzy least squares”, Information Sciences, Vol. 46, pp.141-157, 1988.
10. D’Urso, P., “Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data”, Computational Statistics and Data Analysis, Vol. 42, pp. 47-72, 2003.
11. Fayek, R. and Oduba, A., “Predicting industrial construction labor productivity using fuzzy expert system”, Vol.131, No.8, pp.938-941, 2005.
12. Hojati, M. and Bector, C.R. and Smimou, K., “A simple method for computation of fuzzy linear regression”, European Journal of Operational Research, Vol.116, pp.172-184,2005.
13. Herbsman, Z., “SERC-A Model for Estimating Construction Input”, Journal of Construction Engineering and Management, ASCE, Vol.112, No.3, pp.425-439, 1986.
14. Lu, M. and AbouRizk, S.M. and Hermann, U.H., “Estimating labor productivity using probability inference neural network”, Journal of Construction Engineering and Management, ASCE, pp.241-248, 2000.
15. Lorterapong, P., and Moselhi, O., “Project-network analysis using fuzzy sets theory”, Journal of the Construction Engineering and Management, ASCE, Vol. 122, No. 4, pp. 308-318, 1996.
16. Means, R.S., Site work & Landscape Cost Data(27th annual edition), Kingston, 2008.
17. Pan, N.F. and Hadipriono, F.C. and Whitlatch, E., “A fuzzy reasoning knowledge-based system for assessing rain impact in highway construction scheduling: Part 1. Analytical model”, Journal of Intelligent and Fuzzy Systems, Vol. 16, No.3, pp. 157-167, 2005.
18. Pan, N.F. and Lin, T.C. and Pan, N.H., “Estimating bridge performance based on a matrix-driven fuzzy linear regression model”, Automation in Construction, Vol. 18, No.5, pp. 578-586, 2009.
19. Redden. D. and Woodall. W., “Properties of certain fuzzy regression methods”, Fuzzy Sets and systems, Vol. 64, pp.361-375, 1994.
20. Smith. G..R. and Hancher. D.E., “Estimating precipitation impacts for scheduling”, Journal of Construction Engineering and Management, ASCE, Vol. 101,No.4 , pp.552-566, 1989.
21. Sonmez. R. and Rowings, J. E., “Construction labor productivity modeling with neural networks.”, Journal of Computing in Civil Engineering, ASCE , Vol.124, No.6, pp.498-504,1998.
22. Smith, S.D., “Earthmoving productivity estimation using linear regression techniques”, Journal of Construction Engineering and Management, ASCE, Vol. 125, No.3, pp. 133-141, 1999.
23. Sanders, S.R. and Thomas, H.R. and Smith, G.R. ,“An analysis of factors affecting labor productivity in masonry construction.” ,Pennsylvania State University, University Park, PA ,1989.
24. Sanders, S.R. and Thomas, H.R., “Masonry productivity forecasting model”, Journal of Construction Engineering and Management, ASCE, Vol. 119, No.1 , pp. 163-179, 1993。
25. SPON’S Architect’s and builder’s price book(135th edition),Spon press,2010.
26. Thomas, H.R. and Napolitan, C. L., “Quantitative effects of construction changes on labor productivity ”, Journal of Construction Engineering and Management, Vol. 121, No. 3, September, 1995.
27. Thomas, H.R., Mathews, C.T., and Ward, J.G., “Learning curve models of construction productivity.”, Journal of Construction Engineering and Management, ASCE, Vol. 116,No.4, pp. 245-258, 1986.
28. Thomas, H.R. and Maloney, W. F. and Malcolm, R. and Horner, W. and Smith, G. R. and Handa, V. K. and Sanders, S. R., “Modeling construction labor productivity.”, Journal of Construction Engineering and Management, ASCE, Vol. 116,No.4, pp. 705-725, 1990.
29. Thomas, H.R. and Yiakoumis, I., “Factor model of construction productivity.”, Journal of Construction Engineering and Management, ASCE, Vol.113 , No.4 , pp.623-639,1987.
30. Tanaka, H. and Uejima, S. and Asai, K. ,” Linear regression analysis with fuzzy model”, Transactions on System, Man and Cybernetics, IEEE ,Vol.12, No.6, pp. 903-907, 1982.
31. Tanaka, H. and Watada, J., “Possibilistic linear systems and their application to the linear regression model”, Fuzzy Sets and Systems, Vol. 27, pp. 275-289, 1988.
32. Wang, H.F. and Tasur, R.C., “Resolution of fuzzy regression model” European journal of operational research, Vol. 126, pp. 637-650, 2000.
33. Yang, M.S. and Lin, T.S., “Fuzzy least-squares linear regression analysis for fuzzy input-output data”, Fuzzy Sets and Systems, Vol.126, pp.389-399, 2002.
34. Zayed, T.M. and Halpin, D.W., “Productivity and cost regression models for pile construction”, Journal of Construction Engineering and Management, ASCE, Vol. 131, No.7, pp. 779-141, 2005.
二、中文部分
35. 吳診洪,「污水下水道用戶接管工程生產力預估模型之初步研究」,國立高雄第一科技大學碩士論文,民國九十四年。
36. 李允中、王小璠與蘇木春,模糊理論及其應用,全華科技圖書股份有限公司,2000。
37. 李鴻毅,「傳統線性迴歸與模糊線性迴歸在應用方面的比較」,國立台灣科技大學碩士論文,民國九十四年。
38. 林家群,「施工作業空間衝突下之工班間等待行為造成之生產力折減程度」,國立台灣大學碩士論文,民國九十二年。
39. 徐啟銘,「建築模板作業工率值預估模式之研究」,中華大學論文,民國九十四年。
40. 郭斯傑與李岳能,「降雨因素影響下之工期預測」,中國土木水利工程學刊,第十卷,第四期,第743-751頁,1998。
41. 張鴻展,「集合住宅建築模板工程之生產力分析」,國立臺灣大學,民國九十六年六月。
42. 陳信達,「以倒傳遞網路模型預測傳統模板基準生產力之研究」,國立高雄第一科技大學營建工程研究所碩士論文,民國九十二年。
43. 黃弘銘,「鋼構造基準生產力之研究」,碩士論文,國立高雄第一科技大學營建工程系,2000。
44. 黃榮堯與李文偉,「應用多元線性迴歸建立營建工程工率評估模式之研究-以橋樑工程混凝土澆置為例」,中國土木水利工程學刊,第16 卷,第2 期,第291-300頁,民國93年。
45. 楊敏生,「模糊理論簡介」,數學傳播,第十八卷第一期,民國83年3月,第1至5頁。
46. 劉福勳,「營建生產力之量度及其效益」,營造天下,第109/110期,第18-25頁,2004。
47. 劉子綸,「工率迴算模式建立營建工程單價分析之研究」,國立中興大學土木研究所碩士論文,民國92年。
48. 潘南飛,「土木與建築構造物發生倒塌之肇因分析」,營建管理季刊第66期,第7至13頁,民國95年3月。
49. 潘南飛,「模糊迴歸在工程應用之探討」,技術學刊,第22卷第1期,第1至11頁,民國95年。
50. 潘南飛、石貴崇、李思賢,「以模糊非線性迴歸預估作業之工期」,營建管理季刊第71期,第11至15頁,民國96年8月。
51. 蕭志仁,「連續壁工程生產力改善之研究」,國立高雄第一科技大學營建工程研究所碩士論文,民國98年7月。
校內:2016-01-01公開