簡易檢索 / 詳目顯示

研究生: 王鉦源
Wang, Zhang-Yuan
論文名稱: 以化學還原法製備奈米級銀鈀微粉
Preparation of Nanosize Silver-Palladium Particles by Chemical Reduction Method
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 100
中文關鍵詞: 奈米微粉核-殼
外文關鍵詞: silver, palladium, nanoparticle, core-shell
相關次數: 點閱:83下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以硝酸銀、硝酸鈀為前驅鹽,甲醛為還原劑,PVP為保護劑,利用化學還原法製備銀鈀奈米微粉,文中探討反應液添加順序、反應時間、前驅鹽濃度、銀鈀比例、保護劑比例與還原劑比例等製備變因對銀鈀微粉之影響,並以TEM,XRD,UV/Vis及FT-IR等特性分析,探討統銀鈀微粉之生成機制。

    實驗結果顯示,金屬前驅鹽、還原劑及PVP保護劑之濃度增加時,所得之微粉粒徑會有降低之趨勢。當銀鈀比例Ag/Pd <70/30時,所得為單佈性Pdcore-Agshell型奈米級微粉,且隨銀比例之增高,平均粒徑增大;但當Ag/Pd >70/30時,所得為雙佈性之銀鈀混合微粉。另外,當PVP/金屬比例為10時,所得微粉之粒徑為最小。

    在銀鈀微粉之共還原機制方面,由於銀離子還原電位較鈀為小且鍵結能較高,因此在高銀鈀比例Ag/Pd >70/30時,鈀銀分別依序析出,且因銀易聚集成較大微粒,而形成雙佈性之微粉。當銀鈀比例Ag/Pd <70/30時,溶液中之銀離子便以先行析出之鈀奈米微粒為核種,包覆其上而生成核-殼型鈀銀奈米微粉。另外,以5.42 nm之鈀奈米微粒為核種,再加入硝酸銀等反應物,結果發現所得亦為雙佈性之微粉。因此,可印證鈀銀在高銀鈀比例時,係依序還原而出。

    In this study, palladium-silver (Pd-Ag) nanoparticles were synthesized by the reduction of Pd(NO3)2 and AgNO3 with formaldehyde in the presence of polyvinylpyrrolidone (PVP). The effects of reactant addition, reaction time, Pd/Ag molar ratio, and HCHO/metal ratio on the properties of resultant Pd-Ag nanoparticles were investigated. Furthermore, the formation mechanism of Pd-Ag particles was also studied by means of TEM, XRD, UV/Vis, and FT-IR analyses.

    Experimental results show that the Pd-Ag particle size is decreased with increasing the metal ion concentration, HCHO/metal ratio, and PVP/metal ratio. As the Ag/Pd ratio is less than 70/30, it is found that the resultant particles are nanosized dispersion with Pdcore – Agshell structure. Their particle sizes are increased with increasing the Ag/Pd ratio. As the Ag/Pd is larger than 70/30, the particles are suggested to be the mixture of Pd and Ag nanoparticles which exhibit bimodal size distribution. In addition, there exists a minimum size when the PVP/metal ratio is about 10.

    For the formation of Pd/Ag nanoparticles at Ag/Pd>70/30, the Pd and Ag particles are sequentially obtained via homogeneous nucleation. However, the growth of big Ag particles caused by the large Ag-Ag bond energy leads to the bimodal particle size distribution. At Ag/Pd<70/30, Ag grains are deposited on the Pd particle surface via heterogeneous nucleation, which a Pdcore-Agshell structure is formed. Additionally, a bimodal size distribution is also obtained by reduction of AgNO3 with preseeding 5.42 nm Pd nuclei. This again confirms that the Pd/Ag nanoparticles are formed by the sequential reduction mechanism under high Ag/Pd ratio.

    口試合格證明 誌謝 中文摘要 Ⅰ 英文摘要 Ⅱ 總目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論 1 1.1奈米科技發展 1 1.2奈米粒子簡介 2 1.3金屬奈米粒子簡介 3 1.3.1金屬奈米粒子之性質 3 1.3.2金屬奈米粒子之製備 5 1.3.3雙金屬奈米粒子 5 1.4銀鈀奈米粒子之應用 7 1.5研究目的 7 第二章 原理 14 2.1化學還原法簡介 14 2.2成核原理 15 2.3核-殼(core-shell)奈米粒子理論計算 19 第三章 實驗部分 25 3.1藥品 25 3.2分析儀器 25 3.2.1微粒特性分析 25 3.2.2濃度及轉化率分析 26 3.2.3一般儀器 26 3.3實驗方法及步驟 26 3.3.1共還原法製備純銀、純鈀與銀鈀奈米粒子 26 3.3.2以鈀為核種製備銀包覆鈀之核殼型奈米粒子 27 3.4分析方法 27 3.4.1晶態分析 28 3.4.2粒徑大小及分佈分析 28 3.4.3 UV/Vis分析 29 3.4.4熱重分析 29 3.4.5反應轉化率分析 29 3.4.6 FT-IR分析 29 第四章 結果與討論 34 4.1反應物添加順序之探討 34 4.2反應時間對粒子大小之影響 35 4.3金屬前驅鹽濃度之影響 36 4.4不同銀鈀比例之影響 37 4.5保護劑比例之影響 39 4.6保護劑機制之探討 41 4.7還原劑比例之影響 44 4.8以鈀為核種之銀鈀微粉製備探討 45 4.9微粉生成機制之推論 45 第五章 結論 93 參考文獻 95

    1. C&E News, 24, 47, 1995.
    2. 劉祥麟,”台灣奈米科技研究體系之簡介”,物理雙月刊,23(6),599(2001)
    3. 李世光,孫美芳,”發展微機電系統與奈米技術新興科技的人才培育與發展策略”,科技政策發展報導,2001年11月
    4. 牟中原,陳家俊,”奈米材料研究發展”,科學發展月刊,2000年4月
    5. 廖建勛,”奈米材料的發展動態”,化工資訊,12(2),1998
    6. 莊萬發,”超微粒子理論應用”,復漢出版社,民國84年4月,台南
    7. 蘇品書,”超微粒子材料技術”,復漢出版社,民國78年,台南
    8. G. A. Ozin, Adv. Mater., 4, 612(1992).
    9. C. Hayashi, Phys. Today, 40, 44(1987).
    10. H. J. Fendler, Chem. Rev., 89, 1861(1989).
    11. G. Schimid, “Clusters and Colloids : From Theory to Applications”, VCH, 1994.
    12. 黃德歡,”改變世界的奈米技術”,瀛舟出版社,2002年,台北
    13. H. J. Fenlder, Chem. Rev., 87, 877(1987).
    14. T. Linnert, P. Mulvaney and A. Henglein, J. Phys. Chem., 97, 679(1993).
    15. N. Ichinose, Y. Ozaki and S. Kashu, “Superfine Particle Technology”, Springer-Verlag, 201-203, 1988.
    16. D. W McKee, J.Phys. Chem., 67,841(1963).
    17. N. Toshima, Y. Shiraishi, T. Teranishi, J. Molecular Cat. A-Chemical, 177, 139(2001).
    18. N. Toshima, T. Yonezawa and K. Kushihashi, J. Chem. Soc. Faraday Trans, 89, 2537(1993).
    19. N. Toshima, M. Harada, Y. Yamazaki and K. Asakura, J. Phys. Chem, 96, 9927(1996).
    20. N. Toshima, K. Kushihashi, T. Yonezawa and H. Hirai, Chem. Lett, 1769(1989).
    21. B. Zhao, N. Toshima, Chemical express, 5,721(1990).
    22. N. Toshima and Y. Wang, Langmuir, 10,4574(1994).
    23. N. Ichinose, Y. Ozaki and S. Kashu, “Superfine Particle Technology”, Springer-Verlag London Limited, 1992.
    24. G. Mie, Ann. Phys., 25, 377(1908).
    25. U. Kreibig and C. V. Z. Fragstein, Phys., 224, 307(1969).
    26. K. Selby, M. Vollmer, J. Masui, V. Kersin, W. de Heer and W. Knight, Phys. Rev. B,40,5417(1989).
    27. J. A. Creighton and D. G. Eadon, J. Chem. Soc. Faraday Trans., 87, 3881(1991).
    28. M. Smithard and M. Helv. Tran, Phys. Acta., 46, 869(1974).
    29. N. W. Ashcroft and N. D. Mermin edit, “Solid State Physics”, p5(1976).
    30. R. L. David, “CRC Handbook of Chemistry and Physics”, 74th edition, 12-109,(1993-1994).
    31. R. Gans, Ann. Phys., 37, 881(1912).
    32. Lisiecki, F. Billoudet and M. P. Pileni, J. Phys. Chem, 100, 4160(1996).
    33. 葉伊同,”特殊金屬奈米結構材料”,中正大學化學研究所碩士論文,1998
    34. 張仕欣,王崇人”金屬奈米粒子的吸收光譜”,化學,56(3),209(1998)
    35. S. S. Chang and C. R .C. Wang "金屬奈米粒子的吸收光譜", Chemistry, 56(3), 209(1998).
    36. S. S. Chang, C. W. Shih, C. W. Chen, W. C. Lai and C. R. C. Wang, Langmuir, 15, 701(1999).
    37. M. T. Reetz, W. Helbig, J. Am. Chem. Soc., 116, 7401(1994).
    38. M. T. Reetz, W. Helbig, S. A. Quaiser, Chem. Mater., 7, 2227(1995).
    39. M. T. Reetz, S. A. Quaiser, Angew. Chem., Int. Ed. Engl. 34, 2240(1995).
    40. S. Remita, M. Mostafavi, M. O. Delcourt, Radiat. Phys. Chem., 47, 275(1996).
    41. J. Belloni, M. Mostafavi, S. Remita, J. L. Marignier, M. O. Delcourt, New J. Chem., 1257(1998).
    42. Henglein, J. Phys. Chem., 97, 5457(1993).
    43. M. Mostafavi, N. Keghouche, M. O. Delcourt, M. O. Belloni, J. Chem. Phys. Lett., 167, 193(1990).
    44. J. L. Marignier, J. Belloni, M. O. Delcourt, J. P. Chevalier, Nature, 317, 344(1985).
    45. Cointet, M. Mostafavi, J. Khatouri, J. Belloni, J. Phys. Chem., 101, 3512(1997).
    46. M. Treguer, C. Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard, J. Belloni and R. Keyzer, J. Phys. Chem., 102, 4310(1998).
    47. Henglein, R. Tausch-Treml, J. Colloid Interface Sci., 80, 84(1981).
    48. H. Remita, J. Khatouri, M. Treguer, J. Amblard, J. Z. Belloni, Phys. D, Atoms, Molecules, Clusters, 40, 127(1997).
    49. T. Yonezawa, T. Sato, S. Kurada, K. Kuge, J. Chem, Soc. Faraday Trans., 87, 1905(1991).
    50. M. Y. Han, C. H. Quek, Langmuir, 16, 362(2000).
    51. K. Okitsu, H. Bandow, Y. Maeda, Y. Nagata, Chem. Mater., 8, 315(1996).
    52. K. Okitsu, Y. Mizukoshi, H. Bandow, Y. Maeda, T. A. Yamamoto, Y. Nagata, Ultrasonics Sonochemistry, 3, 249(1996).
    53. Y. Mizukoshi, K. Okitsu, Y. Maeda, T. A. Yamamoto, R. Oshima, Y. Nagata, J. Phys. Chem. B, 101, 7033(1997).
    54. S. Link, Z. L. Wang, M. A. El-Sayed, J. Phys. Chem. B, 103, 3529(1999).
    55. M. Faraday, Philo. Trans. R. Soc. London, 147, 145(1857).
    56. J. Turkevich, G. Kim, Science, 169, 873(1970).
    57. N. Toshima, T. Yonezawa, K. Kushihashi, J. Chem. Soc. Faraday Trans., 89, 2537(1993).
    58. N. Toshima, M. Harada, Y. Yamazaki, K. Asakura, J. Phys. Chem., 96, 9927(1992).
    59. N. Toshima, K. Kushihashi, T. Yonezawa, H. Hirai, Chem. Lett., 1769(1989).
    60. H. Liu, G. Mao, S. Meng, J. Mal. Cat., 74, 275(1992).
    61. P. Y. Silvert, V. Vijayakrishnan, P. Vibert, R. Herrera-Urbina, K. T. Elhsissen, Nanostructured Materials, 7, 611(1996).
    62. P. Y. Silvert, K. Tekaia-Elhsissen, Solid State Ionics, 82, 53(1995).
    63. R. Touroede, P. Girard, G. Maire, J. Kizling, M. Boutonnet-Kizling, P. Stenius, Colloids and Surfaces, 67, 9(1992).
    64. Sangregorio, M. Galeotti, U. Bardi, P. Baglioni, Langmuir, 12, 5800(1996).
    65. M. Boutonnet, J. Kizling, P. Stenius, G. Maire, Colloids Surf., 5, 209(1982).
    66. L. K. Kurihara, G. M. Chow and P. E. Schoen, Nanostructured Materials, 6,607(1995).
    67. N. Toshima, Y. Wang, Langmuir, 10, 4574(1994).
    68. N. Toshima, Y. Wang, Adv. Mater., 6,245(1994).
    69. N. Toshima, P. Lu., Chem. Lett., 729(1996).
    70. M. Treguer, C. Cointet, H. Remita, J. Khatouri, M. Mostafari, J. Amblard, J. Belloni, R. Keyzer, J. Phys. Chem., 102, 4310(1998).
    71. J. Turkevich, G. Kim, Science, 169, 873(1970).
    72. G. Schmid, H. West, J. O. Malm, J. O. Bovin, C. Grenthe, Chem. Eur. J., 2, 1099(1996).
    73. G. Schmid, A. Lehnert, J. O. Malm, J. O. Bovin, Angew. Chem., Int. Ed. Engl., 30, 874(1991).
    74. J. Belloni, M. Mostafavi, S. Remita, J. L. Marignier, M. O. Delcourt, New J. Chem., 1239(1998).
    75. Y. Wang, N. Toshima, J. Phys. Chem. B, 101, 5301(1997).
    76. M. Harada, K. Asakura, Y. Ueki, N. Toshima, J. Phys. Chem., 97, 5103(1993).
    77. P. Y. Silvert, V. Vijayakrishnan, P. H. Urbina and K. T. Elhsissen, Nanostructured Mater., 7(6), 611(1996).
    78. F. Bertoux, E. Monflier, Y. Castanet and A. Mortreux, J. Molecular Catal. A: Chemical, 143, 23(1999).
    79. E. Delarue, M. Mostafavi, M. O. Delcourt and D. Regnault, J. Mater. Sci., 30, 628(1995).
    80. K. S. Chou and C. Y. Ren, Mater. Chem. Phys., 64, 241(2000).
    81. F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert and K. T. Elhsissen, Nanostructured Mater., 11(8), 1277(1999).
    82. B. R. Mayer and J. E. Mark, Polymer, 41, 1627(2000).
    83. K. Esumi, N. Ishizuki, K. Torigoe, H. Nakamura and K. Meguro, J. Appl. Polym. Sci., 44, 1003(1992).
    84. C. Y. Huang, H. J. Chiang, J. C. Huang and S. R. Sheen, Nanostructured Mater., 10(8), 1393(1998).
    85. K. Ohsaki, M. Uda and K. Okazaki, Mater. Transactions, JIM, 36, 1386(1995).
    86. A. J. Bard and L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications”, John Wiley&Son’s, Inc., 808, 2001.
    87. R. A. Alberty and R. J. Silbey, “Physical Chemistry., 2nd ed.”, John Wiley&Son’s, Inc., 227, 1996.
    88. 呂宗昕,”次微米電子陶瓷粉體之製備”,微粉應用技術研討會論文集,1998
    89. 呂宗昕,”電子陶瓷之溶液法粉體製備技術”,化工技術,1(6),1993
    90. J. W. Mullin, “Crystallization”, Butterworth- Heinemann, 172, 1993.
    91. A. C. Zettlemiyer, “Nucleation”, Marcel Dekker, Inc., 233, 1969.
    92. 陳皇鈞譯,陶瓷材料概論(上),曉園出版社,民國76年12月,台北
    93. 賴耿陽,貴金屬元素化學與應用,復漢出版社,民國89年,台南
    94. S. W. Han, Y. Kim and K. J. Kim, Colloid and Interface Sci., 208,272(1998).
    95. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, and G. Q. Xu, Langmuir, 12, 909(1996).
    96. D. Fornasiero, F. Grieser, J. Colloid Interface Sci.,141, 168(1991).
    97. O. Siiman, L. A. Bumm, R. Callaghan, C. G. Blatchford, M. Kerker, J. Phys. Chem.,87, 1014(1983).
    98. Darwent, B. de B., Bond Dissociation Energies in Simple Molecules, NSRDS-NBS-31, National Bureau of Standards, Washington, D. C.,1970.
    100.任鏘諭,”奈米金屬微粒之製備及其特性研究”,清華大學化學工程研究所碩士論文,1999
    101.T. Sugimoto, Advanced in Colloid and Interface Sci., 28, 65(1987).
    102.Z. Zhang, B. Zhao and L. Hu, J. of Solid State Chemistry, 121, 105(1996).

    下載圖示 校內:立即公開
    校外:2002-09-04公開
    QR CODE