| 研究生: |
王世豪 Wang, Shih-Hao |
|---|---|
| 論文名稱: |
利用液相層析串聯式質譜儀搭配由上而下及由下而上質譜分析法於糖尿病患者與正常人的醣化血紅蛋白之特性比較 In-Depth Comparative Characterization of Hemoglobin Glycation in Normal and Diabetic Bloods by LC-MSMS using top-down and bottom-up proteomics approach |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 血紅蛋白 、糖化血色素 、液相層析串聯質譜儀 、由上往下質譜方法 、由下往上質譜方法 |
| 外文關鍵詞: | Hemoglobin, Hemoglobin glycation, LC-MS, Bottom-up, top-down |
| 相關次數: | 點閱:131 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醣基化修飾於血紅蛋白β亞基上N端的纈氨酸胺基上面形成所謂的糖化血紅蛋白被視為檢測是否為糖尿病或其他疾病的一個生物指標。然而,血紅蛋白醣基化是依據動力學結果而發生在不同亞基血紅蛋白之複數位置端上,並且相關的差異討論並沒有很詳細的全面報導。
本實驗將從正常與糖尿病患之血液中萃取出血紅蛋白並經由蛋白質沉澱方式,進行直接注射分析和利用top down方法配合液相層析質譜儀,或是搭配bottom-up方式利用不同蛋白質水解酵素胰蛋白酶、胰凝乳蛋白酶、蛋白内切酶進行酵素水解消化策略並且液相串聯式質譜儀進行不同特性的分析。所得質譜數據經由質譜軟體(Mascot)進行自動數據資料庫搜索後,經由手動分析數據方式獲得結果。
整體蛋白分析顯示了葡萄糖形成醣基化修飾與商業用檢測醣基化血紅蛋白比例具有一定程度良好相關性。而不同水解酵素進行水解消化策略則顯示可以鑑定血紅蛋白主要兩個亞基α與β的基本結構序列覆蓋率達到100%以及7個醣基化修飾位置。由資料顯示除了主要β亞基之N端(β-Val-1),還有兩個主要醣基化修飾位置於β-Lys-66 和α-Lys-61包含了一段相同的序列HGKK。此外,四個次要醣基化位置相對比例少於1%的α-Val-1, β-Lys-132, α-Lys-127 和α-Lys-40皆可以得明顯鑑定。所有醣基化修飾位置之醣基化程度皆可顯示出隨著葡萄糖濃度上升。還有在修飾位置α-Val-1上也發現了另一主要修飾氨基甲酰化與葡糖糖濃度不具有相關趨勢。藉由分子模型預測可得知整個血紅蛋白序列的3D結構圖中,包含了相關序列HGKK位置環境顯示了符合與相關文獻報導容易造成醣基化環境相符。
最後利用bottom-up資訊利用搜尋軟體做一全轉譯後修飾的搜尋可以發現不同類型的修飾存在,可以反映不同樣品之間血紅蛋白上面其他差異性。
本研究進行了對於血紅蛋白醣基化發生的全面性比較在正常和糖尿病患者。由七個位點修飾含量百分比具有相似的趨勢可以反應糖化血色素可以提供的血糖濃度。這樣結果希望能提出新的見解對於HbA1c參數並且這套分析方法另外可以分析出血紅蛋白上面其他轉譯後修飾未來可以應用於判斷有效的其他生物指標關於糖尿病詳細併發症討論。
In this study, hemoglobin was extracted from the blood of normal and diabetic. Triplicate solutions prepared from each sample were directly analyzed via top down approach or digested with multiple enzymes and then analyzed by nano-LC/MS via bottom-up approach for characterization. Intact hemoglobin analysis indicated a single glucose-dominant glycation, which showed good correlation with the HbA1c% values and the sequence information was obtained by collision-induced dissociation of the resulting fragment ions can be extended. Moreover, full sequence (100 %) of α/β globin was mapped and seven glycation sites were unambiguously assigned. In addition to β-Val-1, two other major sites at α-Lys-61 and β-Lys-66, which contain the common sequence HGKK, and four minor sites on α-Val-1, β-Lys-132, α-Lys-127, and α-Lys-40 were identified. All sites were shown to exhibit similar patterns of site distribution despite different glucose levels. Both the intact mass measurement and bottom-up data consistently indicated that the total glycation percentage of the β-globin was twice higher than the α-globin. Using molecular modeling, the 3D structure of the consensus sequence (HGKK) was shown to contain a phosphate triangle cavity, which helps to catalyze the glycation reaction. Finally, compare the difference of mass gap between intact protein spectra and digest peptide PTM search which may exist other posttranslational modification in different sample. For the first time, hemoglobin glycation in normal and diabetic bloods was comparatively characterized in-depth. The results provide insight about the HbA1c parameter and help define the new and old markers.
1 About diabetes. World Health Organization (Retrieved 27 June 2014.).
2 Association, A. D. Diagnosis and classification of diabetes mellitus. Diabetes care 33, S62-S69 (2010).
3 Daniela Cihakova MD, P. Type 1 Diabetes Mellitus. Johns Hopkins Medical Institutions (Retrieved 4 June 2014.).
4 Damjanov, I. ROBBINS AND COTRAN PATHOLOGIC BASIS OF DISEASE, 7TH EDITION. Shock 23, 482-483 (2005).
5 Gardner, D. G. S. D. M. G. F. S. Greenspan's basic & clinical endocrinology, <http://accessmedicine.com/resourceTOC.aspx?resourceID=680> (2011).
6 Metzger, B. E. et al. Summary and recommendations of the fifth international workshop-conference on gestational diabetes mellitus. Diabetes care 30, S251-S260 (2007).
7 Higgins, P. J. & Bunn, H. F. Kinetic analysis of the nonenzymatic glycosylation of hemoglobin. The Journal of biological chemistry 256, 5204-5208 (1981).
8 Gallagher, E. J., Le Roith, D. & Bloomgarden, Z. Review of hemoglobin A(1c) in the management of diabetes. Journal of diabetes 1, 9-17, doi:10.1111/j.1753-0407.2009.00009.x (2009).
9 Rahbar, S., Blumenfeld, O. & Ranney, H. M. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochemical and biophysical research communications 36, 838-843 (1969).
10 Gonen, B., Rubenstein, A., Rochman, H., Tanega, S. P. & Horwitz, D. L. Haemoglobin A1: An indicator of the metabolic control of diabetic patients. Lancet 2, 734-737 (1977).
11 The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. The New England journal of medicine 329, 977-986, doi:10.1056/nejm199309303291401 (1993).
12 Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 837-853 (1998).
13 Sacks, D. B., Nathan, D. M. & Lachin, J. M. Gaps in the glycation gap hypothesis. Clinical chemistry 57, 150-152, doi:10.1373/clinchem.2010.158071 (2011).
14 Cohen, R. M., Holmes, Y. R., Chenier, T. C. & Joiner, C. H. Discordance Between HbA1c and Fructosamine Evidence for a glycosylation gap and its relation to diabetic nephropathy. Diabetes care 26, 163-167 (2003).
15 McDonald, M. J., Shapiro, R., Bleichman, M., Solway, J. & Bunn, H. F. Glycosylated minor components of human adult hemoglobin. Purification, identification, and partial structural analysis. The Journal of biological chemistry 253, 2327-2332 (1978).
16 Garrick, L. M. et al. Structural analysis of the minor human hemoglobin components: Hb AIa1, Hb AIa2 and Hb AIb. European journal of biochemistry / FEBS 106, 353-359 (1980).
17 Prome, D., Blouquit, Y., Ponthus, C., Prome, J. C. & Rosa, J. Structure of the human adult hemoglobin minor fraction A1b by electrospray and secondary ion mass spectrometry. Pyruvic acid as amino-terminal blocking group. The Journal of biological chemistry 266, 13050-13054 (1991).
18 Jaisson, S. & Gillery, P. Evaluation of nonenzymatic posttranslational modification-derived products as biomarkers of molecular aging of proteins. Clinical chemistry 56, 1401-1412, doi:10.1373/clinchem.2010.145201 (2010).
19 Goldin, A., Beckman, J. A., Schmidt, A. M. & Creager, M. A. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114, 597-605, doi:10.1161/CIRCULATIONAHA.106.621854 (2006).
20 Gillery, P. A history of HbA1c through Clinical Chemistry and Laboratory Medicine. Clinical chemistry and laboratory medicine : CCLM / FESCC 51, 65-74, doi:10.1515/cclm-2012-0548 (2013).
21 John, W. G. Haemoglobin A1c: analysis and standardisation. Clinical chemistry and laboratory medicine : CCLM / FESCC 41, 1199-1212, doi:10.1515/cclm.2003.184 (2003).
22 Schifreen, R. S., Hickingbotham, J. & Bowers, G. Accuracy, precision, and stability in measurement of hemoglobin A1C by" high-performance" cation-exchange chromatography. Clinical chemistry 26, 466-472 (1980).
23 Mallia, A. K., Hermanson, G. T., Krohn, R. I., Fujimoto, E. K. & Smith, P. K. Preparation and use of a boronic acid affinity support for separation and quantitation of glycosylated hemoglobins. Analytical Letters, Part B: Clinical and Biochemical Analysis 14, 649-661 (1981).
24 John, W., Albutt, E., Handley, G. & Richardson, R. Affinity chromatography method for the measurement of glycosylated haemoglobin: comparison with two methods in routine use. Clinica chimica acta 136, 257-262 (1984).
25 Lenters-Westra, E. & Slingerland, R. J. Six of eight hemoglobin A1c point-of-care instruments do not meet the general accepted analytical performance criteria. Clinical chemistry 56, 44-52, doi:10.1373/clinchem.2009.130641 (2010).
26 Wada, Y. et al. Structural analysis of human hemoglobin variants with field desorption mass spectrometry. Biochimica et biophysica acta 667, 233-241 (1981).
27 Peterson, K. P. et al. What is hemoglobin A1c? An analysis of glycated hemoglobins by electrospray ionization mass spectrometry. Clinical chemistry 44, 1951-1958 (1998).
28 Jeppsson, J.-O. et al. Approved IFCC reference method for the measurement of HbA1c in human blood. Clinical Chemistry and Laboratory Medicine 40, 78-89 (2002).
29 Little, R. et al. Interlaboratory standardization of measurements of glycohemoglobins. Clinical chemistry 38, 2472-2478 (1992).
30 Jeppsson, J. O. et al. Approved IFCC reference method for the measurement of HbA1c in human blood. Clinical chemistry and laboratory medicine : CCLM / FESCC 40, 78-89, doi:10.1515/cclm.2002.016 (2002).
31 Bry, L., Chen, P. C. & Sacks, D. B. Effects of hemoglobin variants and chemically modified derivatives on assays for glycohemoglobin. Clinical chemistry 47, 153-163 (2001).
32 Vichinsky, E. Hemoglobin E syndromes. ASH Education Program Book 2007, 79-83 (2007).
33 Little, R. R. et al. Effects of hemoglobin (Hb) E and HbD traits on measurements of glycated Hb (HbA1c) by 23 methods. Clinical chemistry 54, 1277-1282, doi:10.1373/clinchem.2008.103580 (2008).
34 Charache, S. et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. New England Journal of Medicine 332, 1317-1322 (1995).
35 Rohlfing, C. L. et al. The effect of elevated fetal hemoglobin on hemoglobin A1c results: five common hemoglobin A1c methods compared with the IFCC reference method. American journal of clinical pathology 129, 811-814, doi:10.1309/YFVTUD0GHJF7D16H (2008).
36 Kwan, J., Carr, E., Bending, M. & Barron, J. Determination of carbamylated hemoglobin by high-performance liquid chromatography. Clinical chemistry 36, 607-610 (1990).
37 Wang, Z. et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nature medicine 13, 1176-1184, doi:10.1038/nm1637 (2007).
38 Szymezak, J., Lavalard, E., Martin, M., Leroy, N. & Gillery, P. Carbamylated hemoglobin remains a critical issue in HbA1c measurements. Clinical chemistry and laboratory medicine : CCLM / FESCC 47, 612-613, doi:10.1515/CCLM.2009.136 (2009).
39 Weykamp, C. W., Penders, T. J., Siebelder, C. W., Muskiet, F. A. & van der Slik, W. Interference of carbamylated and acetylated hemoglobins in assays of glycohemoglobin by HPLC, electrophoresis, affinity chromatography, and enzyme immunoassay. Clinical chemistry 39, 138-142 (1993).
40 Niwa, T., Naito, C., Mawjood, A. H. M. & Imai, K. Increased glutathionyl hemoglobin in diabetes mellitus and hyperlipidemia demonstrated by liquid chromatography/electrospray ionization-mass spectrometry. Clinical chemistry 46, 82-88 (2000).
41 Bridges, K. R., Schmidt, G. J., Jensen, M., Cerami, A. & Bunn, H. F. The acetylation of hemoglobin by aspirin. In vitro and in vivo. Journal of Clinical Investigation 56, 201 (1975).
42 Nathan, D. M., Francis, T. & Palmer, J. Effect of aspirin on determinations of glycosylated hemoglobin. Clinical chemistry 29, 466-469 (1983).
43 Camargo, J. L., Stifft, J. & Gross, J. L. The effect of aspirin and vitamins C and E on HbA1c assays. Clinica chimica acta; international journal of clinical chemistry 372, 206-209, doi:10.1016/j.cca.2006.03.031 (2006).
44 Chait, B. T. Chemistry. Mass spectrometry: bottom-up or top-down? Science 314, 65-66, doi:10.1126/science.1133987 (2006).
45 Lanucara, F. & Eyers, C. E. Top-down mass spectrometry for the analysis of combinatorial post-translational modifications. Mass spectrometry reviews 32, 27-42, doi:10.1002/mas.21348 (2013).
46 Frolov, A., Hoffmann, P. & Hoffmann, R. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry. Journal of mass spectrometry : JMS 41, 1459-1469, doi:10.1002/jms.1117 (2006).
47 Iberg, N. & Fluckiger, R. Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. The Journal of biological chemistry 261, 13542-13545 (1986).
48 Bai, Y., Ueno, H. & Manning, J. M. Some factors that influence the nonenzymatic glycation of peptides and polypeptides by glyceraldehyde. Journal of protein chemistry 8, 299-315 (1989).
49 Watkins, N. G., Neglia-Fisher, C. I., Dyer, D. G., Thorpe, S. R. & Baynes, J. W. Effect of phosphate on the kinetics and specificity of glycation of protein. The Journal of biological chemistry 262, 7207-7212 (1987).
50 Shapiro, R., McManus, M. J., Zalut, C. & Bunn, H. F. Sites of nonenzymatic glycosylation of human hemoglobin A. The Journal of biological chemistry 255, 3120-3127 (1980).
51 Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J., Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angewandte Chemie 44, 7342-7372, doi:10.1002/anie.200501023 (2005).