| 研究生: |
俞宗岳 Yu, Zong-Yue |
|---|---|
| 論文名稱: |
大氣中懸浮微粒二次氣膠含量與生成速率之推估 |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 有機碳 、元素碳 、化學質量平衡模式 、粗微粒 |
| 外文關鍵詞: | OC, EC, CMB, PM10 |
| 相關次數: | 點閱:88 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用PM2.5旋風分離器,針對大氣中懸浮微粒,進行其中懸浮微粒水溶性與含碳成分之特性分析,期能利用大氣懸浮微粒其OC與EC最小的比值、CMB貢獻源比例與排放源資料庫這三種方法,推算出二次衍生性氣膠的生成比例,並加以比較之。另外,再利用逆軌跡模式模擬氣團移動路線,探討軌跡線上衍生性物種之生成速率,以瞭解氣團行進間形成衍生性物種之快慢與影響生成之因素。
衍生性有機碳成分生成量推估有三種方法,其結果如下:CMB貢獻源推估法:推估出衍生性有機碳成分平均值為1.84 μg/m3。最小比例法:推估出衍生性有機碳成分平均值為2.79 μg/m3。排放源資料庫:推估出衍生性有機碳成分平均值為0.45 μg/m3。這三種方法以CMB貢獻源比例推估法較準確 。
在生成速率的部份,衍生性SO42-之生成速率界於1.41 μg/m3*hr與7.29 μg/m3*hr之間,而其平均值為4.06 μg/m3*hr;衍生性NO3-之生成速率界於0.13 μg/m3*hr與3.10 μg/m3*hr之間,而其平均值為0.78 μg/m3*hr;衍生性有機碳之生成速率界於0.14 μg/m3*hr與8.70 μg/m3*hr之間,而其平均值為2.44 μg/m3*hr。而硫的轉化率為3.16 %~29.2 %,平均值為17.0 %;氮的轉化率為0.19 %~17.3 %,平均值為3.64 %;碳的轉化率界於0.59 %~27.3 %之間,其平均值為8.71 %。
This research discusses the carbonaceous species of ambient particle. Then, estimates the contribution of secondary organic carbon by minimum OC/EC ratio of ambient particle, CMB model and emission inventory source to discuss the OC/EC ratio of primary sources. In addition, this research explores the formative rate of secondary particles in trajectory by back trajectories model. Then, estimate the factor in an air mass forming secondary particle.
There is three methods to estimate secondary organic carbonaceous formation. The average value of secondary organic carbonaceous estimating for CMB model is 1.84 μg/m3. The average value of secondary organic carbonaceous estimating for minimum OC/EC ratio is 2.79 μg/m3. The average value of secondary organic carbonaceous estimating for emission inventory source is 0.45 μg/m3.
For formation rate, the formation rate of secondary SO42- is between 1.41 μg/m3 and 7.29 μg/m3 and the average value is 4.06 μg/m3. The formation rate of secondary NO3- is between 0.13 μg/m3 and 3.10 μg/m3 and the average value is 0.78 μg/m3. The formation rate of secondary organic caebonaceous is between 0.14 μg/m3 and 8.70 μg/m3 and the average value is 2.44 μg/m3. For converted rate, the converted rate of S is 3.16 %~29.2 % and the average value is 17.0 %. The converted rate of N is 0.19 %~17.3 % and the average value is 3.64 %. The converted rate of C is 0.59 %~27.3 % and the average value is 8.71 %.
Anderson , K.R.,Avol , E.L.,Edwards , S.A., Peng , R.C., Linn, W.S., Hackney ,J.D.(1992). ”Controlled exporsures of volunteers to respirable carbon and sulphuric acid aerosol” Journal of the Air and Waste Management Association , Vol. 42 , pp:771
Appel, B. R., Hoffer, E. M., Kothny, E. L., Wall, S. M., Haik, M., and Knights, R. L.(1979) “Analysis of Carbonaceous Material in Southern California Atmospheric Aerosols, 2.” Environ. Sci. Technol. Vol. 13, pp. 98 - 104.
Bourque, C. P. A. and Arp, P. A., 1996. Simulating sulfur dioxide plume dispersion and subsequent deposition downwind from a stationary point source: a model. Environ. Pollut. 91, 363-380.
Cess, R. D.(1983) “Artic Aerosols: Model Estimates of Interactive Influences upon The Surface-Atmosphere Clear-Sky Radiation Budget” Atmos. Environ. ,Vol.17 ,pp.2555-2564.
Chan Y.C., R.W. Simpson,G.H. Mctainsh , P.D. Vowles,D.D. Cohen and G.M. Bailey (1999) “Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques.” Atmospheric Environment, vol. 33, pp. 3237-3250
Cheng, S. and Lam, K.-C., 1998. An analysis of winds affecting air pollution concentrations in Hong Kong. Atmos. Environ. 32 (14/15), 2559-2567.
Chow J.C., J.G. Watson, Lu Zhiqiang, D.H. Lowenthal., C.A. Frazier , P.A. Solomon, R.H. Thuillier , K. Magliano , D. Parrish and M. Trainer (1996) “Descriptive Analysis of PM2.5 and PM10 at Regionally Representative Locations during SJVAQS/AUSPEX.” Atmospheric Environment., vol 30, pp. 2079-2112,
Chow J.C., D. Fairley , J.G. Watson, R. DeMandel, E.M. Fujita, D.H. Lowenthal, Lu Zhiqiang, C.A. Frazier, G. Long and J. Cordova (1995) “Source apportionment of wintertime PM10 at San Jose, Calif.” Journal of Environmental Engineering, vol. 121, pp. 378-387
Doty, K. G. and Perkey, D. J., 1993. Sensitivity of trajectories calculation to the temporal frequency of wind data. Mon. Weath. Rev. 121, 387-401.
Fast, J. D. and Berkowitz, C. M., 1997. Evaluation of back trajectories associated with ozone transport during the 1993 north Atlantic regional experiment. Atmos. Environ. 31 (6), 825-837.
Fujita E.M., J.G. Watson, J.C. Chow and K.L. Magliano (1995) “Receptor model and emissions inventory source apportionments of nonmethane organic gases inCalifornia's San Joaquin Valley and San Francisco Bay area.” Atmospheric Environment, vol. 29, pp. 3019-3035
Gray, H. A. , Cass, G. R. , Huntzicker, J. J. , Heyerdahl, E. K. , and Rau, J. A.(1986) “Characteristics of Atmospherics Organic and Elemental Carbon Particle Concentrations in Los Angeles”, Environ. Sci. Technol. , Vol.20, pp.580-589.
Henry R.C. and G.M. Hidy (1985) “Multivariate Analysis of Particulate Sulfate and Other Air Quality Variables by Principal Components-II. Salt Lake City, Utah and St. Louis, Missouri.” Atmospheric Environment, vol. 16, no. 5, pp. 929-943
Hildemann , L.M. , G.R. Markoeski and G.R. Cass (1991) “ Chemical composition of emission from urban source of fine organic aerosol “ Environment Science and Technology Vol.25 , pp.744-759
Hildemann , L.M. , Markowski , G.R. Jones, M.C. and Cass , G.R. (1991b) “Submicrometer aerosol mass distributions of emissions from boilers , fireplace , automobiles , diesel ttucks , and meat cooking operations “ Aerosol Science and Technology , Vol.14 , pp. 138-152
Hinds, W. C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd Edition, John Willey & Sons, Inc., New York, pp. 3-4 (1999)
Hopke P.K. (1985) “Receptor Modeling in Environment Chemistry.” John Willry & Sons Inc.
Kadowski ,s. (1990) “Characterization of carbonaceous aerosols in the Nagoya urban area 1. Element and Organic carbon concentrations and the region of organic aerosols ” Environment Science and Technology Vol.24 , pp.741-744
Kim , Y.P. , Moon , K.C. , Lee , J.H. and Baik N.J. (1999) “ Concentrations of Carbonaceous Species in Particles at Seoul and Cheju in Korea “ Atmospheric Environment Vol.33 , pp.2751-2758
Lee ,T.-Y., Park, S.-W. and Kim, S.-B., 1997. Dependence of trajectory accuracy on the spatial and temporal densities of wind data. Tellus B. 49, 199-512.
Miller M.S. , S.K. Friedlander and G.M. Hidy (1972) “A Chemical element balance for the pasadena aerosol.” J. Colloid Interface Sci., vol. 39, pp. 165-176
Mueller, P. K., Mosly, R. W., and Pierce, L. B. (1972) “Chemical Composition of Pasadena Aerosol by Particle Size and Time of Day--- IV. Carbonate and Noncarbonate Carbon Content” J. Colloid Interface Sci., Vol.39, pp.235-239. Groblicki, P. J., Wolff, G. T., Countess,
Pandis S. N., Harlay R. A., Cass G. R. and Seinfeld J. H., 1992. Secondary organic aerosol formation and transport. Atmos. Environ. 26A, 2269-2282.
R .J.(1981)“Visibility-Reducing Species in The Denver Brown Cloud --- I. Relationships Be tween Extinction and Chemical Compositions” Atmos. Environ., Vol.15, pp.2473-2484.
Rosen, H., and Novakov, T.(1981) “Soot in The Arctic” Atmos. Environ., Vol.16, pp. 2967-2977.
Rolph, G. D. and Draxler, R. R., 1990. Sensitivity of three-dimensional trajectories to the spatial and temporal densities of the wind field. J. Appl. Met. 29, 1043-1054.
Seinfeld , J.H. and Panis , S.N. (1998) “Atmospheric Chemistry and P Whitby K.T. and G.M. Sverdrup (1980) “California Aerosols: Their Physical and Chemical Characteristics.” Adv. Environ. Sci. Technol.,10,477
Seibert, P., 1993. Convergence and accuracy of numerical methods for trajectory calculations. J. Appl. Met. 32, 558-566.
Seinfeld, J. H. and S. N. Pandis., Atmospheric Chemistry and Physics, Wilet Interscience, pp. 363-380.
Stohl A., Wotawa G., Seibert P. and Kromp-Kolb H., 1995. Interpolation errors in wind fields as a function of spatial and temporal resolution and their impact on different types of kinematic trajectories. J. Appl. Met. 34, 2149-2165.
Turpin, B. J.;Huntzicker, J. J.;Larson, S. M. and Cass, G. R. (1991) “ Los Angeles Summer Midday Particulate Carbon: Primary and Secondary Aerosol”, Environmental Science & Technology , Vol.25, No.10, pp.1788-1793.
Turpin, B. J., and Huntzicker, J. J.(1991) “Secondary Formation of Organic Aerosol in The Los Angeles Basin: A Descriptive Analysis of Organic and Elemental Carbon Concentration” Atmos. Environ., Vol.25A , pp. 207-215.
Turpin , B.J. , Huntzicker , J.J. , and Adam , K.M. (1990) “ Intercomparison of Photoacoustic and Thermal-Optical Methods for the Measurement of Atmospheric Elemental Carbon” Atmospheric Environment Vol.25 , pp. 1381-1835 hysics of Air Pollution “ John Wiley and Sons, Inc. New York
Wolff , G.T. ;Groblicki , P.S. ;Cadle , S.H. and Countess , R. (1982) ”Particlulate Carbon at Various Location in the United States. In Pariculate Carbon Atmospheric Life Cycle (Edited : Plenum Press by Wolff , G.T. ;Klimisch , R.L.)” New York, NY:Plenum, pp. 297-315
Watson J.G., J.C. Chow, F. Lurmann, and S. Musarra (1994) “Ammonium nitrate, nitric acid, and ammonia equilibrium in wintertime phoenix, Arizona.” Journal of Air& Waste Management Association, vol 44, pp405-412
Watson J.G. (1984) “Overview of Receptor Model Principles.” JAPCA, vol. 34, pp.619-623
林銳敏、戴華山,『高雄市大氣懸浮微粒PM2.5及PM2.5-10之化學成份與來源推估』,高雄市政府環境保護局期末報告,1999、2001。
許文昌,”台北都會區氣懸微粒之化學特性”,碩士論文,國立中央大學環境工程研究所,1992。
許文昌、李崇德,『台北都會區氣懸微粒污染來源的推估』,第九屆空氣污染控制技術研討會,pp189-202,1992。
李崇德、許文昌、簡宏倫、謝康,『台灣北部都會區氣懸微粒污染特性及其污染來源推估』,第十二屆空氣污染控制技術研討會,pp427-433,1995。
蔡德明、吳義林,『高屏地區大寮測站PM10 與PM2.5 之組成份特徵研究』,1998年氣膠研討會論文集,pp339-346,1998。
蔡德明、吳義林、陳冠志,『南高屏地區懸浮微粒分佈特徵與來源之研究』,1998年氣膠研討會論文集,pp311-317,1998。
王弼正、李崇德、陳鏡廉,『大台北地區PM2.5 細粒氣膠污染來源推估』,第十四屆空氣污染控制技術研討會,pp402-407,1997。
鄭曼婷、邱嘉斌、楊宏隆、陳紀綸,『沿海地區大氣懸浮微粒污染來源分析』,第十五屆空氣污染控制技術研討會,pp733-740,1998。
葉士鳴,”大氣中懸殊微粒含碳成分之分佈與來源”,碩士論文,國立成功大學環境工程研究所,2001。
林銳敏、黃建達,” 不同空氣品質測站粗細微粒碳成分分佈分析 ” 1999年國際氣膠研討會,台北,pp92-97,1999。