簡易檢索 / 詳目顯示

研究生: 蕭鼎成
Xiao, Ding-Cheng
論文名稱: 以濕式化學法製備Li2O-CaO-B2O3-SiO2膠體粒子及其對鈦酸鋇之助燒結與介電性質影響研究
Wet chemistry-based preparation of Li2O-CaO-B2O3-SiO2 glass sintering aids and their implications in enhancing the dielectric characteristics of barium titanate ceramic
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 126
中文關鍵詞: 鈦酸鋇鋰鈣硼矽玻璃濕式化學混合改性劑效應介電性質
外文關鍵詞: Barium titanate, lithium calcium borosilicate glass, wet chemical method, mixed modifier effect, dielectric properties
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 用濕式化學法,以 TEOS, H3BO3, LiNO3, CaNO3.4H2O作為前驅鹽、乙二醇及檸檬酸作為螯合劑,製備Li2O-CaO-B2O3-SiO2 (LCBS)玻璃,並且利用調整檸檬酸劑量及改變溶劑種類,探討製程參數,對LCBS玻璃結構的影響。本研究使用XRD確認LCBS玻璃成分的均勻性以及結晶行為,並以FTIR及Raman光譜分析玻璃分子結構,使用DTA分析玻璃之熱性質。為確認LCBS玻璃對於鈦酸鋇陶瓷體的助燒結性質,並將LCBS玻璃加入鈦酸鋇中製成陶瓷體,以DIL確認熱收縮溫度區間,以1050-1200℃分別進行鈦酸鋇中陶瓷體燒結並分析其相對密度變化趨勢,以及介電性質表現。
    過調整LCBS玻璃中之CaO/Li2O比,比較玻璃結構中[BO4]及橋氧鍵結比例以及其對於玻璃熔融溫度的影響。同時藉由XRD結構精算,分析Ca離子與Li離子對於鈦酸鋇晶格參數以及其對結構摻雜劑的擴散行為的影響。研究結果顯示,Li2O-B2O3-SiO2 (LBS)具有較佳的助燒效果與高介電常數表現,但絕緣電阻率卻相對較低;而使用CaO-B2O3-SiO2 (CBS)作為玻璃助燒結劑,雖可有效提升鈦酸鋇的絕緣電阻率,但助燒效果與介電常數則相對較低。而Li2O-CaO-B2O3-SiO2 (LCBS) 則可透過混合改性劑效應,有效在助燒效果與介電性質間取得平衡。本研究透過調整Li2O/CaO比,控制玻璃結構、晶格參數、氧空缺占比及摻雜劑的擴散速率,使用X=0.5 (0.125Li2O-0.125CaO-0.125B2O3-0.625SiO2) 作為助燒結劑,可於1200℃獲得緻密鈦酸鋇陶瓷體,並保有高介電常數、高絕緣電阻率以及低介電損耗的優異介電表現。

    Li2O-CaO-B2O3-SiO2 (LCBS) glass was prepared using a wet chemical method with TEOS, H3BO3, LiNO3, and Ca(NO3)2·4H2O as precursor salts, and ethylene glycol and citric acid as chelating agents. The effects of adjusting the CaO/Li2O ratio in LCBS glass on the melting temperature were compared. Additionally, XRD structure refinement was used to analyze the effects of Ca and Li ions on the lattice parameters of barium titanate and the diffusion behavior of structural dopants. The results showed that Li2O-B2O3-SiO2 (LBS) exhibited better sintering aid effects and higher dielectric constants, but relatively lower insulation resistivity. While using CaO-B2O3-SiO2 (CBS) as a glass sintering aid effectively improved the insulation resistance of barium titanate, its sintering aid effect and dielectric constant were relatively lower. Li2O-CaO-B2O3-SiO2 (LCBS) effectively achieved a balance between sintering aid effects and dielectric properties through the mixed modifier effect. By adjusting the CaO/Li2O ratio, this study controlled the glass structure, lattice parameters, oxygen vacancy proportion, and diffusion rate of dopants. Using X=0.5 (0.125Li2O-0.125CaO-0.125B2O3-0.625SiO2) as a sintering aid, dense barium titanate ceramic bodies were obtained at 1200℃, maintaining excellent dielectric performance with high dielectric constants, high insulation resistivity, and low dielectric loss.

    中文摘要 I ABSTRACT II 致謝 XVIII 目錄 XX 表目錄 XXIII 圖目錄 XXIV 第一章 緒論 1 第二章 理論基礎及文獻回顧 3 2-1 多層陶瓷電容基本原理與種類 3 2-2鈦酸鋇基本性質 6 2-3離子摻雜對鈦酸鋇介電性質的影響 8 2-4液相燒結 9 2-5 Sol-Gel method 10 2-5-1 Sol-Gel method - pH值的影響 11 2-5-2 Sol-Gel method - H2O/TEOS比的影響 12 2-6 Stöber method 13 2-7 Pechini method 14 2-8 硼矽酸鹽類玻璃網絡結構 15 第三章 實驗方法與步驟 16 3-1 實驗藥品 16 3-2 實驗流程 17 3-2-1醇系製程LBS玻璃 17 3-2-2水系製程LCBS玻璃 18 3-2-3添加LCBS玻璃鈦酸鋇陶瓷生坯製程 20 3-2-4添加LCBS玻璃鈦酸鋇陶瓷生坯製程 21 3-2-5鈦酸鋇陶瓷體電性量測 22 3-3材料性質分析 23 3-3-1 X光繞射儀 23 3-3-2掃描式電子顯微鏡 24 3-3-3傅立葉轉換紅外光譜儀 25 3-3-4拉曼光譜儀 25 3-3-5熱重熱差同步分析儀 26 3-3-6熱膨脹分析儀 26 3-3-7阿基米德密度量測法 27 3-3-8介電性質量測 27 3-3-9 X射線光電子能譜儀 28 3-3-10穿透式電子顯微鏡 29 3-3-11電容溫度係數測量 29 第四章 結果與討論 30 4-1濕式化學法製備Li2O-B2O3-SiO2 (LBS)玻璃助燒結劑 30 4-1-1 檸檬酸添加量 30 4-1-2 溶劑種類 34 4-2 Li2O含量對LBS玻璃性質、助燒結與介電性質影響 39 4-3 Li2O-CaO-B2O3-SiO2玻璃性質、助燒結與介電性質影響 52 4-4 Li2O-CaO-B2O3-SiO2玻璃對鈦酸鋇晶格結構、殼核結構與介電性質的影響 69 4-4-1 LCBS玻璃對鈦酸鋇晶格參數的影響 69 4-4-2 LCBS玻璃對摻雜劑擴散行為的影響 73 4-4-3 LCBS玻璃對鈦酸鋇陶瓷體介電性質的影響 78 4-4-4 LCBS玻璃對鈦酸鋇陶瓷體中氧空缺與摻雜劑的影響 82 4-4-5 添加LCBS玻璃對鈦酸鋇殼核結構的影響 85 第五章 結論 89 參考文獻 91

    [1] Dietzel, A. H., "On the so-called mixed alkali effect," Physics and chemistry of glasses, vol. 24, no. 6, pp. 172-180, 1983
    [2] Day, D. E., "Mixed alkali glasses—their properties and uses," Journal of Non-Crystalline Solids, vol. 21, no. 3, pp. 343-372, 1976
    [3] Tomozawa, M., "Structure of mixed alkali glasses," Journal of non-crystalline solids, vol. 196, pp. 280-284, 1996
    [4] Zhao, Q., Gong, H., Wang, X., Luo, B., and Li, L., "Influence of BaO–CaO–SiO2 on dielectric properties and reliability of BaTiO3‐based ceramics," physica status solidi (a), vol. 213, no. 4, pp. 1077-1081, 2016
    [5] Yu, S. W., "Investigation on the electrical properties of Coblat doping hexagonal BaTiO3," 2010
    [6] Das, A., "Characterizations of Lead Free BNT-BT-KNN Ceramics Synthesized by Microwave Technique," 2014.
    [7] Song, Y. H., Hwang, J. H., and Han, Y. H., "Effects of Y2O3 on temperature stability of acceptor-doped BaTiO3," Japanese journal of applied physics, vol. 44, no. 3R, p. 1310, 2005
    [8] Sun, C., Wang, X., and Li, L., "Low sintering of X7R ceramics based on barium titanate with SiO2–B2O3–Li2O sintering additives in reducing atmosphere," Ceramics International, vol. 38, pp. S49-S52, 2012
    [9] Yoon, S. H., Randall, C. A., and Hur, K. H., "Influence of grain size on impedance spectra and resistance degradation behavior in acceptor (Mg)‐doped BaTiO3 ceramics," Journal of the American Ceramic Society, vol. 92, no. 12, pp. 2944-2952, 2009
    [10] Miao, H., Dong, M., Tan, G., and Pu, Y., "Doping effects of Dy and Mg on BaTiO3 ceramics prepared by hydrothermal method," Journal of electroceramics, vol. 16, pp. 297-300, 2006
    [11] Pant, H., Patra, M., Verma, A., Vadera, S., and Kumar, N., "Study of the dielectric properties of barium titanate–polymer composites," Acta materialia, vol. 54, no. 12, pp. 3163-3169, 2006
    [12] Lines, M. E. and Glass, A. M., Principles and applications of ferroelectrics and related materials. Oxford university press, 2001.
    [13] Xiang, X., Hou, L., and Gan, F., "Sol-gel derived BaTiO3 thin films," in International Conference on Thin Film Physics and Applications, 1991, vol. 1519: SPIE, pp. 712-716.
    [14] German, R. M., Suri, P., and Park, S. J., "Liquid phase sintering," Journal of materials science, vol. 44, pp. 1-39, 2009
    [15] Assink, R. A. and Kay, B. D., "Sol-gel kinetics I. Functional group kinetics," Journal of Non-Crystalline Solids, vol. 99, no. 2-3, pp. 359-370, 1988
    [16] Iler, R. K., "The chemistry of silica, Solubility, Polymerization," Colloid and Surface Properties, and Biochemistry, vol. 866, 1979
    [17] Brinker, C. J. and Scherer, G. W., Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, 2013.
    [18] Livage, J., Henry, M., and Sanchez, C., "Sol-gel chemistry of transition metal oxides," Progress in solid state chemistry, vol. 18, no. 4, pp. 259-341, 1988
    [19] Stöber, W., Fink, A., and Bohn, E., "Controlled growth of monodisperse silica spheres in the micron size range," Journal of colloid and interface science, vol. 26, no. 1, pp. 62-69, 1968
    [20] Lei, X., Yu, B., Cong, H.-L., Tian, C., Wang, Y.-Z., Wang, Q.-B., and Liu, C.-K., "Synthesis of monodisperse silica microspheres by a modified stöber method," Integrated Ferroelectrics, vol. 154, no. 1, pp. 142-146, 2014
    [21] Ibrahim, I. A., Zikry, A., and Sharaf, M. A., "Preparation of spherical silica nanoparticles: Stober silica," J. Am. Sci, vol. 6, no. 11, pp. 985-989, 2010
    [22] Danks, A. E., Hall, S. R., and Schnepp, Z., "The evolution of ‘sol–gel’chemistry as a technique for materials synthesis," Materials Horizons, vol. 3, no. 2, pp. 91-112, 2016
    [23] Barlet, M., Kerrache, A., Delaye, J.-M., and Rountree, C. L., "SiO2–Na2O–B2O3 density: a comparison of experiments, simulations, and theory," Journal of non-crystalline solids, vol. 382, pp. 32-44, 2013
    [24] Gundale, S., Behare, V., and Deshpande, A., "Study of electrical conductivity of Li2O-B2O3-SiO2-Li2SO4 glasses and glass-ceramics," Solid State Ionics, vol. 298, pp. 57-62, 2016
    [25] Kamitsos, E. I., Patsis, A., Karakassides, M. A., and Chryssikos, G. D., "Infrared reflectance spectra of lithium borate glasses," Journal of Non-Crystalline Solids, vol. 126, no. 1-2, pp. 52-67, 1990
    [26] Chen, M.-Y., Juuti, J., Hsi, C.-S., Chia, C.-T., and Jantunen, H., "Dielectric BaTiO3–BBSZ glass ceramic composition with ultra-low sintering temperature," Journal of the European Ceramic Society, vol. 35, no. 1, pp. 139-144, 2015
    [27] Zhou, F., Xu, D., Shi, M., and Bi, Y., "Investigation on microstructure and its transformation mechanisms of B2O3-SiO2-Al2O3-CaO brazing flux system," High Temperature Materials and Processes, vol. 39, no. 1, pp. 88-95, 2020
    [28] Wang, Y.-L., "Preparation of Li2O-B2O3-SiO2 glass by wet-chemical process and its sintering performance on BaTiO3-based MLCC applications," 2023.
    [29] Biskri, Z. E., Rached, H., Bouchear, M., and Rached, D., "Computational study of structural, elastic and electronic properties of lithium disilicate (Li2Si2O5) glass-ceramic," Journal of the mechanical behavior of biomedical materials, vol. 32, pp. 345-350, 2014
    [30] Muralidharan, P., Venkateswarlu, M., and Satyanarayana, N., "Sol–gel synthesis, structural and ion transport studies of lithium borosilicate glasses," Solid State Ionics, vol. 166, no. 1-2, pp. 27-38, 2004
    [31] Muralidharan, P., Venkateswarlu, M., and Satyanarayana, N., "Sol–gel synthesis, characterization and impedance studies of lithium borosilicate glass," Materials research bulletin, vol. 39, no. 11, pp. 1753-1762, 2004
    [32] Kaur, R., Singh, S., and Pandey, O., "Structural variation in gamma ray irradiated PbO–Na2O–B2O3–SiO2 glasses," Solid state communications, vol. 188, pp. 40-44, 2014
    [33] Fernandes, J. S., Gentile, P., Moorehead, R., Crawford, A., Miller, C. A., Pires, R. A., Hatton, P. V., and Reis, R. L., "Design and properties of novel substituted borosilicate bioactive glasses and their glass-ceramic derivatives," Crystal Growth & Design, vol. 16, no. 7, pp. 3731-3740, 2016
    [34] Han, J., Lai, Y., Xiang, Y., Wu, S., Zeng, Y., Yang, H., Mao, Y., and Yang, Y., "Structure and crystallization behavior of Al containing glasses in the CaO–B2O3–SiO2 system," RSC Advances, vol. 7, no. 24, pp. 14709-14715, 2017
    [35] Xiang, Y., Han, J., Lai, Y., Li, S., Wu, S., Xu, Y., Zeng, Y., Zhou, L., and Huang, Z., "Glass structure, phase transformation and microwave dielectric properties of CaO–B2O3–SiO2 glass–ceramics with addition of La2O3," Journal of Materials Science: Materials in Electronics, vol. 28, pp. 9911-9918, 2017
    [36] Baia, L., Simon, S., and Kiefer, W., "Infrared and Raman structural investigations of Bi2O3–PbO–B2O3 glasses," Physics and chemistry of glasses, vol. 46, no. 3, pp. 279-283, 2005
    [37] Pan, H., Zhao, X., Zhang, X., Zhang, K., Li, L., Li, Z., Lam, W., Lu, W., Wang, D., and Huang, W., "Strontium borate glass: potential biomaterial for bone regeneration," Journal of the Royal Society Interface, vol. 7, no. 48, pp. 1025-1031, 2010
    [38] Möncke, D., Ehrt, R., Palles, D., Efthimiopoulos, I., Kamitsos, E. I., and Johannes, M., "A multi technique study of a new lithium disilicate glass-ceramic spray-coated on ZrO2 substrate for dental restoration," Biomedical glasses, vol. 3, no. 1, pp. 41-55, 2017
    [39] Brawer, S. A. and White, W. B., "Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates," The Journal of Chemical Physics, vol. 63, no. 6, pp. 2421-2432, 1975
    [40] Honma, T., Nguyen, P. T., and Komatsu, T., "Crystal growth behavior in CuO-doped lithium disilicate glasses by continuous-wave fiber laser irradiation," Journal of the Ceramic Society of Japan, vol. 116, no. 1360, pp. 1314-1318, 2008
    [41] Yao, C., Dong, X., Gao, G., Sha, F., and Xu, D., "Microstructure and adsorption properties of MTMS/TEOS Co-precursor silica aerogels dried at ambient pressure," Journal of Non-Crystalline Solids, vol. 562, p. 120778, 2021
    [42] Pan, Y., He, S., Gong, L., Cheng, X., Li, C., Li, Z., Liu, Z., and Zhang, H., "Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying," Materials & Design, vol. 113, pp. 246-253, 2017
    [43] Dai, S., Ju, Y., Gao, H., Lin, J., Pennycook, S., and Barnes, C., "Preparation of silica aerogel using ionic liquids as solvents," Chemical Communications, no. 3, pp. 243-244, 2000
    [44] Yonezawa, F., "Glass transition and relaxation of disordered structures," in Solid State Physics, vol. 45: Elsevier, 1991, pp. 179-254.
    [45] Mysen, B. O. and Frantz, J. D., "Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25–1475 C," Chemical geology, vol. 96, no. 3-4, pp. 321-332, 1992
    [46] Yan, T., Zhang, W., Chen, X., Wang, F., and Bai, S., "Sintering densification behaviors and crystallization characteristics of glass–ceramics formed by two types of CaO–B2O3–SiO2 glass," Journal of Materials Science: Materials in Electronics, vol. 30, pp. 10352-10359, 2019
    [47] Smedskjaer, M. M., Mauro, J. C., and Yue, Y., "Cation diffusivity and the mixed network former effect in borosilicate glasses," The Journal of Physical Chemistry B, vol. 119, no. 23, pp. 7106-7115, 2015
    [48] Micoulaut, M., Kerner, R., and dos Santos-Loff, D., "Statistical modelling of structural and thermodynamical properties of vitreous B2O3," Journal of Physics: Condensed Matter, vol. 7, no. 42, p. 8035, 1995
    [49] Jellison Jr, G., Panek, L., Bray, P., and Rouse Jr, G., "Determinations of structure and bonding in vitreous B2O3 by means of B10, B11, and O17 NMR," The Journal of Chemical Physics, vol. 66, no. 2, pp. 802-812, 1977
    [50] Youngman, R., Haubrich, S., Zwanziger, J., Janicke, M., and Chmelka, B., "Short-and intermediate-range structural ordering in glassy boron oxide," Science, vol. 269, no. 5229, pp. 1416-1420, 1995
    [51] Youngman, R. and Zwanziger, J., "Multiple boron sites in borate glass detected with dynamic angle spinning nuclear magnetic resonance," Journal of non-crystalline solids, vol. 168, no. 3, pp. 293-297, 1994
    [52] Hannon, A. C., Grimley, D. I., Hulme, R. A., Wright, A. C., and Sinclair, R. N., "Boroxol groups in vitreous boron oxide: new evidence from neutron diffraction and inelastic neutron scattering studies," Journal of non-crystalline solids, vol. 177, pp. 299-316, 1994
    [53] Lou, Q., Shi, X., Ruan, X., Zeng, J., Man, Z., Zheng, L., Park, C. H., and Li, G., "Ferroelectric properties of Li‐doped BaTiO3 ceramics," Journal of the American Ceramic Society, vol. 101, no. 8, pp. 3597-3604, 2018
    [54] Solomatov, V., El-Khozondar, R., and Tikare, V., "Grain size in the lower mantle: constraints from numerical modeling of grain growth in two-phase systems," Physics of the Earth and planetary interiors, vol. 129, no. 3-4, pp. 265-282, 2002
    [55] Ma, N., Zhang, B.-P., and Yang, W.-G., "Low-temperature sintering of Li2O-doped BaTiO3 lead-free piezoelectric ceramics," Journal of electroceramics, vol. 28, pp. 275-280, 2012
    [56] Kimura, M., Weisberg, M., Lin, Y., Suzuki, A., Ohtani, E., and Okazaki, R., "Thermal history of the enstatite chondrites from silica polymorphs," Meteoritics & Planetary Science, vol. 40, no. 6, pp. 855-868, 2005
    [57] Deng, L. and Du, J., "Borosilicate and boroaluminosilicate glasses," Atomistic Simulations of Glasses: Fundamentals and Applications, pp. 224-260, 2022
    [58] Sun, Y. and Zhang, Z., "Structural roles of boron and silicon in the CaO-SiO2-B2O3 glasses using FTIR, Raman, and NMR spectroscopy," Metallurgical and Materials Transactions B, vol. 46, pp. 1549-1554, 2015
    [59] Wang, S.-F., Lai, B.-C., Hsu, Y.-F., and Lu, C.-A., "Dielectric properties of CaO–B2O3–SiO2 glass-ceramic systems in the millimeter-wave frequency range of 20–60 GHz," Ceramics International, vol. 47, no. 16, pp. 22627-22635, 2021
    [60] Wang, T., Wang, X., Song, T.-H., and Li, L., "Microstructures and dielectric characteristics of ultrafine-grained barium titanate-based ceramics for base-metal-electrode multilayer ceramic capacitors applications," Japanese Journal of Applied Physics, vol. 46, no. 10R, p. 6751, 2007
    [61] Wang, L., Lv, J., Shi, F., Song, K., Lei, W., Zhou, H., Qi, Z.-M., and Wang, J., "Intrinsic dielectric properties and lattice vibrational characteristics of single phase BaTiO3 ceramic," Journal of Materials Science: Materials in Electronics, vol. 32, no. 19, pp. 24041-24049, 2021
    [62] Li, Y., Wu, S., Wang, G., and Wang, S., "Phase structure and dielectric properties of doped BaTiO3 ceramics," Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 22, pp. 522-525, 2007
    [63] Wang, S., Su, H., Chen, L., and Yuan, H., "Effect of Pb (Ti, Sn) O3 on the dielectric properties of high dielectric constant X8R BaTiO3-based ceramics," Journal of Materials Science: Materials in Electronics, vol. 21, pp. 1159-1163, 2010
    [64] Hirata, Y., Nitta, A., and Kawabata, M., "Microstructure and dielectric properties of BaTiO3 prepared by colloidal processing," Journal of the Ceramic Society of Japan, vol. 102, no. 1192, pp. 1168-1172, 1994
    [65] Hsiang, H.-I., Yang, Y.-H., Huang, C.-Y., and Yang, K.-H., "Dielectric properties of BaTiO3 and Ba0. 95Ca0. 05TiO3 sintered in a reducing atmosphere," Ceramics International, vol. 49, no. 17, pp. 28751-28757, 2023
    [66] Buzatu, A. and Buzgar, N., "The Raman study of single-chain silicates," Analele Stiintifice de Universitatii AI Cuza din Iasi. Sect. 2, Geologie, vol. 56, no. 1, p. 107, 2010
    [67] Zhu, H., Fu, R., Agathopoulos, S., Fang, J., Li, G., and He, Q., "Crystallization behaviour and properties of BaO-CaO-B2O3-SiO2 glasses and glass-ceramics for LTCC applications," Ceramics International, vol. 44, no. 9, pp. 10147-10153, 2018
    [68] Shuai, C., Mao, Z., Han, Z., Peng, S., and Li, Z., "Fabrication and characterization of calcium silicate scaffolds for tissue engineering," Journal of Mechanics in Medicine and Biology, vol. 14, no. 04, p. 1450049, 2014
    [69] Baek, J.-S., Jo, N.-B., and Kim, E.-S., "Microwave dielectric properties of β-CaSiO3 glass–ceramics prepared using two-step heat treatment," Processes, vol. 9, no. 12, p. 2180, 2021
    [70] Kimura, T., Dong, Q., Yin, S., Hashimoto, T., Sasaki, A., and Sato, T., "Synthesis and piezoelectric properties of Li-doped BaTiO3 by a solvothermal approach," Journal of the European Ceramic Society, vol. 33, no. 5, pp. 1009-1015, 2013
    [71] Yang, Y., Hao, H., Zhang, L., Chen, C., Luo, Z., Liu, Z., Yao, Z., Cao, M., and Liu, H., "Structure, electrical and dielectric properties of Ca substituted BaTiO3 ceramics," Ceramics International, vol. 44, no. 10, pp. 11109-11115, 2018
    [72] Yamaji, A., Enomoto, Y., Kinoshita, K., and Murakami, T., "Preparation, characterization, and properties of Dy‐doped small‐grained BaTiO3 ceramics," Journal of the American Ceramic Society, vol. 60, no. 3‐4, pp. 97-101, 1977
    [73] Yang, Z., Gu, Y., Zhang, F., Liu, Z., and Li, Y., "Improved dielectric breakdown strength of Dy doped (Ba0. 97Ca0. 03)(Ti0. 98Mg0. 02) O3 ceramics with nanosized grains," physica status solidi (a), vol. 214, no. 10, p. 1700149, 2017
    [74] Mostari, M. S., Haque, M. J., Ankur, S. R., Matin, M. A., and Habib, A., "Effect of mono-dopants (Mg2+) and co-dopants (Mg2+, Zr4+) on the dielectric, ferroelectric and optical properties of BaTiO3 ceramics," Materials Research Express, vol. 7, no. 6, p. 066302, 2020
    [75] Burn, I., "Mn-doped polycrystalline BaTiO3," Journal of Materials Science, vol. 14, no. 10, pp. 2453-2458, 1979
    [76] Lee, M. H. and Song, T. K., "Comparison of multi-valent manganese oxides (Mn4+, Mn3+, and Mn2+) doping in BiFeO3-BaTiO3 piezoelectric ceramics," Journal of the European Ceramic Society, vol. 39, no. 15, pp. 4697-4704, 2019
    [77] Kimura, T., Dong, Q., Yin, S., Hashimoto, T., Sasaki, A., Aisawa, S., and Sato, T., "Synthesis and piezoelectric properties of Li, Ca and Mn-codoped BaTiO3 by a solvothermal approach," in IOP Conference Series: Materials Science and Engineering, 2013, vol. 47, no. 1: IOP Publishing, p. 012018.
    [78] Peng, W., Li, L., Yu, S., Yang, P., and Xu, K., "Dielectric properties, microstructure and charge compensation of MnO2-doped BaTiO3-based ceramics in a reducing atmosphere," Ceramics International, vol. 47, no. 20, pp. 29191-29196, 2021
    [79] Harizanova, R., Bocker, C., Avdeev, G., Slavov, S., Costa, L. C., Avramova, I., and Rüssel, C., "Microstructure and electrical conduction of iron-doped barium titanate glass-ceramics," Journal of Non-Crystalline Solids, vol. 560, p. 120711, 2021
    [80] Jiang, X., Hao, H., Yang, Y., Zhou, E., Zhang, S., Wei, P., Cao, M., Yao, Z., and Liu, H., "Structure and enhanced dielectric temperature stability of BaTiO3-based ceramics by Ca ion B site-doping," Journal of Materiomics, vol. 7, no. 2, pp. 295-301, 2021
    [81] Chen, C.-S., Chou, C.-C., and Lin, I.-N., "Microstructure of X7R Type Base-Metal-Electroded BaTiO3 Capacitor Materials Co-Doped with MgO/Y2O3 Additives," Journal of electroceramics, vol. 13, pp. 567-571, 2004
    [82] Chou, C.-C., Chen, C.-S., Lin, I.-N., Yang, W.-C., and Cheng, H.-F., "Development of X7R type base-metal-electroded BaTiO3 capacitor materials by co-doping of MgO/Y2O3 additives," Ferroelectrics, vol. 332, no. 1, pp. 35-39, 2006
    [83] Molokhia, N., Issa, M. A., and Nasser, S., "Dielectric and X-ray diffraction studies of barium titanate doped with ytterbium," Journal of the American Ceramic Society, vol. 67, no. 4, pp. 289-291, 1984
    [84] Jeon, S.-C., Yoon, B.-K., Kim, K.-H., and Kang, S.-J. L., "Effects of core/shell volumetric ratio on the dielectric-temperature behavior of BaTiO3," Journal of Advanced Ceramics, vol. 3, pp. 76-82, 2014
    [85] Härdtl, K. and Wernicke, R., "Lowering the curie temperature in reduced BaTiO3," Solid State Communications, vol. 10, no. 1, pp. 153-157, 1972

    無法下載圖示 校內:2029-07-01公開
    校外:2029-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE