| 研究生: |
李宗翰 Lee, Tsung-Han |
|---|---|
| 論文名稱: |
平面顯示器用奈米複晶矽鍺薄膜以及薄膜電晶體的研製 Characterization and Preparation of Nano-SiGe Thin Film and Its Applications for TFT in Flat Panel Display |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 薄膜電晶體 、奈米結晶矽鍺 |
| 外文關鍵詞: | nc-SiGe, TFT |
| 相關次數: | 點閱:58 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著平面顯示器產業的快速發展,薄膜電晶體的設計及改良頓成為重要課題。目前廣為應用的非晶矽薄膜電晶體雖然可以大面積且低溫均勻成長,但驅動電流較低是其最大的缺點。近來積極研究的高溫複晶矽薄膜電晶體雖擁有大驅動電流,但其需高溫製程不利於玻璃基板上成長。至於低溫複晶矽則於大面積製作時不易均勻,且具較高成本。於是吾人利用PECVD疊層氫原子電漿處理技術(Hydrogen plasma treatment)來成長奈米矽鍺薄膜電晶體,不但保有目前非晶矽薄膜技術的優點可以低溫(250℃)下大面積成長,而且可以大幅提升其載子遷移率進而提升驅動電流,增加開關電流比。
本論文發展出p、i、n三種type之奈米複晶矽鍺薄膜的最佳製程參數,並利用FeSEM、AFM觀察薄膜的表面, Hall measurement量測載子移動率作為電性分析依據,以及使用Raman spectra、XRD等儀器分析薄膜的結晶品質。最後吾人以奈米複晶矽鍺取代非晶矽應用於在薄膜電晶體之通道層,分別在矽基板以及玻璃基板上製作奈米複晶矽鍺薄膜電晶體,並量測其Transfer characteristic和I-V curve,據此探討其使用於液晶顯示器之優缺點。
Thin film transistors (TFTs) have been employed extensively to drive and address each pixel in the flat panel displays. Amorphous TFTs have the advantages of low temperature and simple deposition, but also possess the drawback of poor current driving ability. Instead, poly-silicon TFTs are widely studied for their high mobility. However, the high fabrication temperature prevents it from using glass substrate. On the other hand, the low temperature poly-silicon (LTPS) that usually annealed with excimer laser annealing (ELA) on amorphous silicon still have the non-uniformity issue for production in large area and the extra annealing also cost a lot.
In this thesis, we developed the nc-SiGe thin films with a novel method of layer-by-layer hydrogen plasma treatment. This method is not only effective but also compatible to the convention amorphous silicon TFTs technology. The nc-SiGe films have higher mobility than amorphous silicon films and can be uniformly deposited at low temperature (250℃). Additionlly, we optimized the best growth parameters to fabricate the p-type, n-type and intrinsic type nc-SiGe, respectively. Furthermore, we also investigated physical and electrical characteristics of the films by Fe-SEM, AFM, Hall measurement, Raman spectrum and XRD, correspondingly. Finally, we apply the developed nc-SiGe thin films to prepare TFT and studied their performance for flat panel display applications.
[1] 工研院IEK-IT IS計畫(2004/10), 工研院產業經濟與資訊服務中心
[2] Tsu-Jae King and Krishna C. Saraswat, Polycrystalline Sillicon-Germanium Thin Film Transistors”, IEEE Trans. Electron Devices, Vol.41, No.9, pp.1581-1591, 1994.
[3] 紀國鐘、鄭晃忠, ”液晶顯示器技術手冊”, 經濟部技術處發行, 台灣電子材料與元件協會出版
[4] T.Aoyama, G.Kawachi, N,Konishi, Y.Okajima and K.Miyata, “Crystallization of LPCVD Silicon Films by Low Temperature Annealing”, Journal of the Electrochemistry . Soc., vol136, no.4, pp.1169-1173, 1989.
[5] Seong-Min Choe, Jeong-Ah Ahn and Ohyum Kim, “Fabrication of Laser Annealed Poly-TFT by Foaming a SixGE1-x Thermal Barrier”, IEEE Electron Device Letters, Vol.22, No.3, March 2001.
[6] Seok-Woon Lee, Yoo-Chan Jeon and Seung-Ki Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett., 66(13), 27, pp1671-1673, March 1995.
[7] Jae Young, Ki Hyung Kim and Chae Ok Kim, “Low temperature metal induced crystallization of amorphous silicon using a Ni solution”, Journal of Applied Physics, 82(11),pp.5865-5867, December 1997.
[8] Hiroshi Kanno, Isao Tsunoda, Atsushi Kenjo, Taizoh Sadoh, Shinya Tamaguchi, Masanobu Miyao, “Metal-induced solid-phase crystallization of amorphous SiGe film on insulator”, SSDM, 2002.
[9] 范盛宏,方炎坤, ”金誘發非晶矽橫向結晶層之研製及特性分析”,國立成功大學電機工程學系碩士論文,民88年6月。
[10] 林秉章,方炎坤, ”利用層疊氫原子化學回火及電漿輔助化學氣相沉積技術成長低溫奈米矽鍺薄膜之研究”,國立成功大學電機工程學系碩士論文,民94年6月。
[11] 王文德,方炎坤, ”利用金作低溫金屬誘發橫向結晶(MILC)成長應用於光電元件的複晶矽鍺薄膜之研究”,國立成功大學電機工程學系碩士論文,民92年6月。
[12] P. Roca i Cabarrocas, S. Hamma, “Microcrystalline silicon growth on a-Si:H: effects of hydrogen”, Thin Solid Films 337 (1999) 23-26.
[13] T. H. Buyuklimanli, K. Pangal, J. C. Sturm, S. Wanger, “Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films”, Journal of Applied Physics, Volume 85, Number 3, 1 February 1999.
[14] Juni-ici Hanna, Takayuki Ohuchi, Masaji Yamamoto, “Direct fabrication of SiGe crystallites on glass substrate: from nanocrystals to microcrystals”, Journal of Non-crystalline Solids 198-200 (1996) 879-882.
[15] Pere ROCA i CABARROCAS, Anna FONTCUBERTA I MORRAL, Billel KALACHE, and Samir KASOUIT, “Microcrystalline Silicon Thin Films Grown by PECVD. Growth Mechanisms and Grain Size Control”, Solid State Phenomena Vol. 93 (2003) pp. 257-268.
[16] X. L. Jiang, Y. L. He, H. L. Zhu, “The effect of passivation of boron dopants by hydrogen in nano-crystalline and micro-crystalline silicon films”, J. Phys.: Condens. Matter 6 (1994) 713-718.
[17] 洪志昇,方炎坤, ”碘摻雜TPD、Alq3、CuPC及五環素有機薄膜特性之研究”,國立成功大學電機工程學系碩士論文,民94年6月。
[18] T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, S. Nitta, ”Characterization and role of hydrogen in nc-Si:H”, Journal of Non-Crystalline Solids 266-269 (2000) 201-205.
[19] C. Godet, N. Layadi, P. Roca i Cabarrocas, “Role of mobile hydrogen in the amorphous silicon recrystallization”, Applied Physics Letter 66 (23), 5 June 1995.
[20] P. Roca i Cabarrocas, ”Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films”, Journal of Non-Crystalline Solids 266-269 (2000) 31-37.
[21] Akihisa Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasma”. Thin Solid Films 337 (1999) 1-6.
[22] O. Vetterl, P. Hapke, F. Finger, L. Houben, ”Growth of microcrystalline silicon using the layer-by-layer technique at various plasma excitation frequency”. Journal of Non-Crystalline Solids 227-230. (1998) 866-870.
[23] P. Roca i Cabarrocas, “Plasma enhanced chemical vapor deposition of silicon thin films for large area electronics”, Current Opinion in Solid State and Material Science 6 (2002) 439-444.
[24] G. H. Bauer, F. Voigt, R.Carius, M. Krause, R. Bruggemann, T. Unold, “Electronic Properties of Microcrystalline SiGe-Thin Films by Hall-Experienments and Photo- and Dark-Transport”, Journal of Non-Crystalline Solids 299-302 (2002) 153-157.
[25] M. Krause, H. Stiebig, R.Carius, U. Zastrow, H. Bay, H. Wagner, ”Structural and optoelectronic properties of microcrystalline silicon germanium”, Journal of Non-Crystalline Solids 299-302 (2002) 158-162.