簡易檢索 / 詳目顯示

研究生: 李沛倚
Lee, Pei-Yi
論文名稱: 應用多目標基因演算法於平準化生產-以鍛造輪圈加工廠為例
A Multi-objective Hybrid Genetic Algorithm for Production Leveling - The Case Study of Forged Wheel Industry
指導教授: 王宏鍇
Wang, Hung-Kai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 63
中文關鍵詞: 平準化生產產能規劃鍛造輪圈加工廠多目標基因演算法
外文關鍵詞: Leveling Production, Capacity Planning, Forged Wheel Process, Multi-Objective Genetic Algorithm
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 汽車產業的發達,改變了製造過程。在受到第四次工業革命後,汽車製造模式推動以工業4.0模式進行生產,汽車零組件產業也深受其響。然而,以現況來看,傳統零組件產業生產模式轉換成工業4.0將存在著一定的難度,而原因在於工業 4.0 顛覆以往產品生產流程和人機協作模式。倘若藉由演算法改變生產排程,擺脫傳統以EXCEL的人工作業,將能大幅提升生產效率與改善目前生產現況。基於上述理由,本研究使用Python 3.6撰寫一套生產排程系統來進行料號挑選與產能規劃,應用於汽車之鋁輪框加工產業,將生產原料分類、機台維護與換機時間與庫存數量作為此套生產排程系統參數。使用多目標基因演算法,其中交配率及突變率參數提供兩種模式,分別為固定與動態模式,差別在於迭代次數於固定模式時數值無變化,而動態模式為迭代次數會隨著次數變化進行線性調整。 最後本研究以真實案例資料進行分析,欲透過與案例公司現行產能規劃方法進行比較並逐次修正系統,實證研究結果發現所提出的平準化生產架構相較於傳統人工方式更能以較高的效率且降低人為錯誤發生進行規劃。

    The developed automobile industry has driven the relevant industrial chain. With the rise of environmental consciousness, the auto industry toward reducing emissions and improve fuel and other goals. Nowadays cars are constantly innovating. In addition to the progress of car body equipment, the manufacturing process is also affected by industry 4.0 and factory intelligence to change the production mode, and the upstream car components are also affected by it.Automotive components industry belongs to the upstream of the industry, the production pattern is a variety of flexible manufacturing. For the coming of the industrial age 4.0, need to improve the original manufacturing model, otherwise will lose the original competitive advantage. Therefore, how to digital transformation and keep competitive advantage is one of the important issues.

    摘 要 I 致 謝 XVII 圖目錄 XX 表目錄 XXII 第一章 緒論 1 1.1 研究背景、動機與重要性 1 1.2 研究目的 3 1.3 論文結構 4 第二章 理論基礎與文獻回顧 6 2.1 鋁輪圈加工製程 6 2.2 平準化生產 8 2.3 相關文獻整理與評析 10 2.4 既有方法論介紹 12 第三章 研究架構 21 3.1 研究架構 21 第四章 實證研究 28 4.1 案例背景 28 4.2 資料與參數設定說明 32 4.3 結果比較與討論 38 4.3.1 第一階段平準化結果 38 4.3.2 第二階段平準化結果 49 4.3.3 原始方法與多目標基因演算法比較結果 56 第五章 結論與未來研究方向 60 結論與未來研究方向 60 參考文獻 61

    H. Akbaripour, and E. Masehian (2013), "Efficient and robust parameter tuning for heuristic algorithms," Int. J. Ind. Eng. Prod. Res., vol. 24, no. 2
    A. Atamtürk, and D. S. Hochbaum (2001), "Capacity acquisition, subcontracting, and lot sizing," Management Science, vol. 47, no. 8, pp. 1081-1100.
    S. Bermon, and G. E. Feigin. (1999). Method of allocating work in capacity planning In : Google Patents.
    S. Bermon, and S. J. Hood (1999), "Capacity optimization planning system (CAPS)," Interfaces, vol. 29, no. 5, pp. 31-50.
    C.-S. Chen, S. Mestry, P. Damodaran, and C. Wang (2009), "The capacity planning problem in make-to-order enterprises," Mathematical and computer modelling, vol. 50, no. 9-10, pp. 1461-1473.
    C.-F. Chien, T.-y. Hong, and H.-Z. Guo (2017), "A conceptual framework for “Industry 3.5” to empower intelligent manufacturing and case studies," Procedia Manufacturing, vol. 11, no. pp. 2009-2017.
    P. Damodaran, N. S. Hirani, and M. C. Velez-Gallego (2009), "Scheduling identical parallel batch processing machines to minimise makespan using genetic algorithms," European Journal of Industrial Engineering, vol. 3, no. 2, pp. 187-206.
    R. De Smet, and L. Gelders (1998), "Using simulation to evaluate the introduction of a Kanban subsystem within an MRP-controlled manufacturing environment," International Journal of Production Economics, vol. 56, no. pp. 111-122.
    K. Demeter, and Z. Matyusz (2011), "The impact of lean practices on inventory turnover," International Journal of Production Economics, vol. 133, no. 1, pp. 154-163.
    B. Esmaeilian, S. Behdad, and B. Wang (2016), "The evolution and future of manufacturing: A review," Journal of Manufacturing Systems, vol. 39, no. pp. 79-100.
    N. Geng, Z. Jiang, and F. Chen (2009), "Stochastic programming based capacity planning for semiconductor wafer fab with uncertain demand and capacity," European Journal of Operational Research, vol. 198, no. 3, pp. 899-908.
    Goldberg, D. E, Holland, and J. Henry (1988), "Genetic algorithms and machine learning," no.2,pp. 95-99.
    F. E. Gruber. (2013). Industry 4.0: A best practice project of the automotive industry. Paper presented at the IFIP International Conference on Digital Product and Process Development Systems.
    J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami (2013), "Internet of Things (IoT): A vision, architectural elements, and future directions," Future generation computer systems, vol. 29, no. 7, pp. 1645-1660.
    A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A. Hammouri, and V. Prasath (2019), "Choosing mutation and crossover ratios for genetic algorithms—a review with a new dynamic approach," Information, vol. 10, no. 12, pp. 390.
    R. L. Haupt, and S. E. Haupt. (2004). Practical genetic algorithms. John Wiley & Sons.
    J. Holland. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.
    J. H. Holland (1992), "Genetic algorithms," Scientific american, vol. 267, no. 1, pp. 66-73.
    C.-L. Hwang, and K. Yoon. (1981). Methods for multiple attribute decision making Multiple attribute decision making (pp. 58-191): Springer.
    C. Karlsson, and P. Ahlström (1996), "The difficult path to lean product development," Journal of product innovation management, vol. 13, no. 4, pp. 283-295.
    H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann (2014), "Industry 4.0," Business & information systems engineering, vol. 6, no. 4, pp. 239-242.
    Y. Monden. (2011). Toyota production system: an integrated approach to just-in-time. CRc Press.
    J. Olhager, M. Rudberg, and J. Wikner (2001), "Long-term capacity management: Linking the perspectives from manufacturing strategy and sales and operations planning," International Journal of Production Economics, vol. 69, no. 2, pp. 215-225.
    R.Shah, and P. T. Ward (2003), "Lean manufacturing: context, practice bundles, and performance," Journal of operations management, vol. 21, no. 2, pp. 129-149.
    O.Taiichi (1978), "Toyota seisan hoshiki," The Toyota production system, Dayamondo.
    O. Taiichi. (1982). The origin of Toyota production system and kanban system. Paper presented at the Proceedings of the International Conference on Productivity and Quality Improvement.
    S. Wang, J. Chen, and K.-J. Wang (2007), "Resource portfolio planning of make-to-stock products using a constraint programming-based genetic algorithm," Omega, vol. 35, no. 2, pp. 237-246.
    Z. Yu, H. Yan, and T. E. Cheng (2001), "Benefits of information sharing with supply chain partnerships," Industrial management & Data systems, no.3,pp 114-119.

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE