簡易檢索 / 詳目顯示

研究生: 林宏儒
Lin, Hung-Ju
論文名稱: 氮化鋁粉體表面改質及高導熱複合材料製程開發
Surface Treatment of Aluminum Nitride Powder and Process Development for High Thermal Conductivity Composite Materials
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 64
中文關鍵詞: 氮化鋁矽氧烷耦合劑高導熱複合材料
外文關鍵詞: aluminum nitride, silane coupling agent, high thermal conductivity composite materials
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鋁粉體在濕氣環境下容易發生水解反應形成氫氧化鋁與氨氣,使氮化鋁高熱傳導性質降低,且當粒徑越小時此情形更為嚴重。為解決水解問題,本論文進行氮化鋁表面改質,並製備環氧樹脂/氮化鋁複合材料。使用矽氧烷偶合劑改質氮化鋁粉後,使其幫助與環氧樹脂之間鍵結;以硬酯酸改質氮化鋁粉,表面形成阻絕水氣之改質層具有抗水解能力。經抗濕測試後,表面改質後粉體均具有抵抗濕氣能力,測試48小時後氧含量上升不到1 wt.%;在抗水解測試中,僅以硬酯酸改質具抗水解能力,測試72小時後pH值變化在0.8以下。在氮化鋁複合材結果顯示,改質後粉體均有較佳熱傳導值但差異不明顯,可能粉體粒徑小而表面積大影響,造成高分子與氮化鋁之間界面熱阻多,導致熱傳導隨著不同表面改質粉體無明顯改變。

    The small particle size range of aluminum nitride powder trended to hydrolysis reaction and formed aluminum hydroxide and ammonia in the moisture environment. The high thermal conductivity property of aluminum nitride reduced, and when it become worse as the particle size of aluminum nitride decreased. In this thesis, the surface of aluminum nitride powder was treated and fabrication into Epoxy/Aluminum composite materials. After aluminum nitride powder was treated with the silane coupling agent, it improved the bonding of the epoxy. Aluminum nitride was treated with stearic acid, the surface formed the modified layer that possessed the water-resistance property. By the test of moisture resistance, aluminum nitride powder with surface treatment was proved to resist moisture. And after testing for 48 hours, the oxygen content increased less than 1 wt.%. By the water resistance test, aluminum nitride powder can also have water resistant property by treating with stearic acid. After testing for 72 hours, the pH value changed below 0.8. The results of Epoxy/Aluminum nitride composite materials showed that the treated powders had better thermal conductivity values but the difference was not obvious. Because of the particle size of the powders were small and the surface area of aluminum nitride were large, these factors caused the thermal resistance of the increasing interface between the polymer and aluminum nitride. Therefore, the thermal conductivity didn't changed significantly with different treated surface of powder.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 氮化鋁簡介 1 1-2 氮化鋁物理性質 2 1-3 氮化鋁合成方法 6 1-4 氮化鋁水解 9 1-5 研究動機 12 第二章 基礎理論與文獻回顧 13 2-1 矽氧烷偶合劑簡介 13 2-3 環氧樹脂簡介 15 2-4 文獻回顧 16 2-4-1 氮化鋁表面改質部分 17 2-4-2 氮化鋁複合材料部分 19 第三章 實驗內容 22 3-1 實驗材料與藥品 22 3-2 實驗設備與分析儀器 23 3-3 實驗流程 25 3-4 實驗步驟 26 3-4-1 氮化鋁表面改質 26 3-4-2 氮化鋁複合材料 26 3-5 氮化鋁粉體分析與複合材測試 27 第四章 氮化鋁表面改質 31 4-1 氮化鋁分析 31 4-1-1 氮化鋁粉體檢測 31 4-1-2 氮化鋁抗濕氣測試 33 4-1-3 氮化鋁抗水解測試 34 4-1-4 氮化鋁水解測試後之形態分析 35 4-1-5 氮化鋁水解測試後之晶格分析 37 4-2 矽氧烷偶合劑表面改質於氮化鋁 38 4-2-1 矽氧烷偶合劑添加量探討 38 4-2-2 矽氧烷偶合劑改質之抗濕氣測試 40 4-2-3 矽氧烷偶合劑改質之抗水解測試 41 4-2-4 矽氧烷偶合劑改質之形態分析 43 4-2-5 矽氧烷偶合劑改質之晶格分析 44 4-3 硬酯酸表面改質於氮化鋁 45 4-3-1 硬酯酸表面鍵結 45 4-3-3 硬酯酸改質之抗濕氣測試 45 4-3-4 硬酯酸改質之抗水解測試 46 4-3-5 硬酯酸改質之形態分析 47 4-3-6 硬酯酸改質之晶格分析 48 第五章 氮化鋁複合材料 50 5-1使用未改質氮化鋁粉體 50 5-2 使用矽氧烷偶合劑改質氮化鋁粉體 51 5-3 使用硬酯酸表面改質氮化鋁粉體 52 5-4 不同表面改質方式製備氮化鋁複合材料影響 53 5-4-1 表面改質劑影響 54 5-4-2 填充劑添加體積百分比影響 55 5-4-3 複合材料應用影響 56 第六章 結論 58 參考文獻 59

    [1] T. J. Mroz, "Aluminum Nitride," American Ceramic Society Bulletin, vol. 71, pp. 782, (1992).
    [2] G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, "The intrinsic thermal conductivity of AIN," Journal of Physics and Chemistry of Solids, vol. 48, pp. 641-647, (1987).
    [3] L. M. Sheppard, Ceram. Bull., vol. 69, pp. 1801, (1990).
    [4] B. H. Mussler, Ceram. Bull., vol. 79, pp. 45, (2000).
    [5] 汪建民, "陶瓷材料手冊," 中華民國科技發展協進會, (1994).
    [6] N. Kuramoto, H. Taniguchi, and I. Aso, "Sintering and Properties of High-Purity AlN Ceramics," ed, (1998).
    [7] F. Y. E. Man, Ame. Cera. Soc., vol. 26, pp. 19-54, (1994).
    [8] C. S. B. A. A. Gallo, K. E. Howard, S.D. Dunmead and S. A. Anderson,, "Moisture resistant aluminum nitride filler for high thermal conductivity microelectronic molding compounds," Electronic components and Technology Conference, pp. 335-342, (1996).
    [9] G. Selvaduray and L. Sheet, "Aluminum Nitride - Review of Synthesis Methods," Materials Science and Technology, vol. 9, pp. 463-473, (1993).
    [10] F. J. M. Haussonne, "Review of the Synthesis Methods for Aln," Materials and Manufacturing Processes, vol. 10, pp. 717-755, (1995).
    [11] A. G. Merzhanov and I. P. Borovinskaya, "New Class of Combustion Processes," Combustion Science and Technology, vol. 10, pp. 195-201, (1975).
    [12] J. F. Crider, "Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials," Ceramic Engineering and Science Proceedings, vol. 3, p. 519, (1982).
    [13] S. Kumar, "Self-propagating high temperature synthesis of refractory nitrides, carbides and borides," Key Engineering Materials, vol. 56-57, pp. 183-188, (1991).
    [14] 劉益嘉, "燃燒合成氮化鋁粉體之量產製程開發," 國立成功大學碩士論文, (2011).
    [15] 陳煥煜, "使用不同形態之鋁粉以燃燒合成法製備氮化鋁粉體之製程開發及反應機構探討," 國立成功大學碩士論文, (2011).
    [16] D. Hotza, O. Sahling, and P. Greil, "Hydrophobing of Aluminum Nitride Powders," Journal of Materials Science, vol. 30, pp. 127-132, (1995).
    [17] T. K. Kristoffer Krnel, "Aqueous Processing of AlN Powder," Materials Science Forum, vol. 554, pp. 189-196, (2007).
    [18] J. G. H. Paul Bowen, Alain Mocellin, Terry A. Ring,, "Degradation of Aluminum Nitride Powder in an Aqueous Environmet," Journal of the American Ceramic Society, vol. 73, pp. 724-728, (1990).
    [19] A. V. Virkar, T. B. Jackson, and R. A. Cutler, "Thermodynamic and Kinetic Effects of Oxygen Removal on the Thermal-Conductivity of Aluminum Nitride," Journal of the American Ceramic Society, vol. 72, pp. 2031-2042, (1989).
    [20] S. Fukumoto, T. Hookabe, and H. Tsubakino, "Hydrolysis behavior of aluminum nitride in various solutions," Journal of Materials Science, vol. 35, pp. 2743-2748, (2000).
    [21] E. P. Plueddemann, Silane Coupling Agents. New York, (1991).
    [22] K. L. Mittal, Silanes and Other Coupling Agents: VSP, (2009).
    [23] 賴耿陽, "環氧樹脂應用實務", 復漢出版社, (1999).
    [24] C. S. Patrick Judeinstein, "Hybrid organic-inorganic materials: a land of multidisciplinarity," Journal of Materials Chemistry, vol. 6, pp. 511-525, (1996).
    [25] X. H. Wenyi Peng, , Jinhong Yu, Pingkai Jiang, , Wenhao Liu, "Electrical and thermophysical properties of epoxy/aluminum nitride nanocomposites: Effects of nanoparticle surface modification," Composites Part A: Applied Science and Manufacturing, vol. 41, pp. 1201-1209, (2010).
    [26] K. C. Yung, B. L. Zhu, J. Wu, T. M. Yue, and C. S. Xie, "Effect of AlN content on the performance of brominated epoxy resin for printed circuit board substrate," Journal of Polymer Science Part B-Polymer Physics, vol. 45, pp. 1662-1674, (2007).
    [27] K. Krnel and T. Kosmac, "Reactivity of aluminum nitride powder in dilute inorganic acids," Journal of the American Ceramic Society, vol. 83, pp. 1375-1378, (2000).
    [28] S. M. O. Ibram Ganesh, Aurora B. Araújo, Maria R. Correia, Govindan Sundararajan and José M. F. Ferreira*, "Chemisorption of Phosphoric Acid and Surface Characterization of As Passivated AlN Powder Against Hydrolysis," Langmuir, vol. 24, pp. 5359-5365, (2008).
    [29] M. Egashira, Y. Shimizu, Y. Takao, R. Yamaguchi, and Y. Ishikawa, "Effect of Carboxylic-Acid Adsorption on the Hydrolysis and Sintered Properties of Aluminum Nitride Powder," Journal of the American Ceramic Society, vol. 77, pp. 1793-1798, (1994).
    [30] M. Egashira, Y. Shimizu, and S. Takatsuki, "Chemical Surface Treatments of Aluminum Nitride Powder Suppressing Its Reactivity with Water," Journal of Materials Science Letters, vol. 10, pp. 994-996, (1991).
    [31] Y. Q. Li, T. Qiu, J. Xu, and X. C. He, "Surface modification of aluminium nitride powder," Journal of Materials Science Letters, vol. 15, pp. 1758-1761, (1996).
    [32] W. C. Aijie Ma, Yonggang Hou, Gai Zhang, "The Preparation and Cure Kinetics Researches of Thermal Conductivity Epoxy/AlN Composites," Polymer-Plastics Technology and Engineering, vol. 49, pp. 354-358, (2010).
    [33] Y. C. Xu, D.D.L., "Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments," Composite Interfaces, vol. 7, pp. 243-256, (2010).
    [34] C. Y. Hsieh and S. L. Chung, "High thermal conductivity epoxy molding compound filled with a combustion synthesized AIN powder," Journal of Applied Polymer Science, vol. 102, pp. 4734-4740, (2006).
    [35] Y. S. Xu, D. D. L. Chung, and C. Mroz, "Thermally conducting aluminum nitride polymer-matrix composites," Composites Part a-Applied Science and Manufacturing, vol. 32, pp. 1749-1757, (2001).
    [36] S. H. Xie, B. K. Zhu, J. B. Li, X. Z. Wei, and Z. K. Xu, "Preparation and properties of polyimide/aluminum nitride composites," Polymer Testing, vol. 23, pp. 797-801, (2004).
    [37] 許倍華, "氮化鋁粉體的表面改質技術開發," 國立成功大學碩士論文, (2011).
    [38] 劉世量, "提升氮化鋁╱環氧樹脂複合材料熱傳導性質之研究," 國立成功大學碩士論文, (2003).
    [39] E. J. Sadler and A. C. Vecere, "Silane Treatment of Mineral Fillers - Practical Aspects," Plastics Rubber and Composites Processing and Applications, vol. 24, pp. 271-275, (1995).
    [40] H. M. Liao, Sodhi, R. N. S. , Coyle, T. W. , "Surface composition of AlN powders studied by x‐ray photoelectron spectroscopy and bremsstrahlung‐excited Auger electron spectroscopy," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 11, pp. 2681-2686, (1993).
    [41] B. Baur, G. Steinhoff, J. Hernando, O. Purrucker, M. Tanaka, B. Nickel, M. Stutzmann, and M. Eickhoff, "Chemical functionalization of GaN and AlN surfaces," Applied Physics Letters, vol. 87, (2005).
    [42] T. N. W. Carlo G. Pantano, "XPS Analysis of Silane Coupling Agents and Silane-treated E-glass Fibers," SURFACE AND INTERFACE ANALYSIS, vol. 15, (1990).
    [43] M. D. A. J.C. Sanchez-Lopez, C. Real and A. Fernandez, "The use of X-ray photoelectron spectroscopy to characterize fine AlN powders submitted to mechanical attrition," NanoStructured Materials, vol. 11, pp. 249-257, (1999).
    [44] 謝承佑, "氮化鋁粉體水解性質探討與抗濕技術開發," 國立成功大學碩士論文, (2002).
    [45] I. Ganesh, N. Thiyagarajan, G. Sundararajan, S. M. Olhero, and J. M. F. Ferreira, "A non-aqueous processing route for phosphate-protection of AlN powder against hydrolysis," Journal of the European Ceramic Society, vol. 28, pp. 2281-2288, (2008).
    [46] 謝承佑, "高導熱氮化鋁陶瓷粉體在複合材料與電子基板應用之先導研究," 國立成功大學博士論文, (2006).

    無法下載圖示 校內:2017-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE