| 研究生: |
朱常瑞 Jhu, Chang-Ruei |
|---|---|
| 論文名稱: |
利用COMSOL Multiphysics模擬奈米滴管探針的電化學行為 Simulation of Nanopipette-Based Electrochemical System with COMSOL Multiphysics |
| 指導教授: |
陳巧貞
Chen, Chiao-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 奈米滴管探針 、滴管碳電極 、COMSOL Multiphysics |
| 外文關鍵詞: | nanopipette, carbon nanoprobe, COMSOL Multiphysics |
| 相關次數: | 點閱:52 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,以奈米滴管探針(nanopipette)為基礎衍伸的掃描探針顯微技術(scanning probe technique),於表面形貌量測、表面電性偵測及表面電化學活性分析等應用領域快速發展,但受限於其所檢測之表面性質與空間維度,較難以使用其他分析技術來輔佐驗證其實驗結果,於樣品或探針的物化性質的定量分析較難建立通用的標準。為解決缺乏對照數據的問題,在本文中使用COMSOL Multiphysics此模擬軟體,依照實際實驗所拍攝的電子顯微鏡影像建立幾何模型,並根據實驗條件建立對應模型後以模擬來預測實驗結果,或由實驗結果來近似得到對應樣品的物化性質。以此法建立的奈米滴管探針模型則能由近似法推測探針表面所具有的表面電荷,並從模擬結果得知幾何形狀與偵測所得電流的關聯性;而碳微電極模型能以近似法得到與利用熱裂解碳沉積法所製備之奈米碳電極相同的電化學性質,並由此預測不同電化學實驗條件下的結果。除了作為實驗的對比基準外,未來能用模擬模型模擬實驗條件,來事先預測實驗成果或從模擬得知樣品或探針所具備的物理、化學性質。
Nanopipette-based scanning probe techniques have been extensively applied in analysis of diverse surface properties with nanometer scale resolution, such as topology determination, surface charge detection and electro-chemical analysis at the interface. Limited by difficulties in batch fabrication of nanopipette-based probes with exactly the same geometry and surface charges, development in precise quantitative analysis of physiochemical properties at interface with pipette-based probes is significantly retarded. To solve this problem, we use a commercial software called “COMSOL Multiphysics” to simulate and predict numerical results obtained via laboratory experiments. The simulation model is built based on the designed experimental setup. The calculated results from simulation are applied to figure out interested properties of the experimental systems under study by fitting the calculated results to the experimental data. The model built in accordance with the nanopipette can figure out the surface charge density of the nanopipette by fitting with the experiment data, and consequently we can get the correlation between the ion current and the geometry of a nanopipette. On the other hand, the electrochemical properties of the carbon nanopipette electrode can be evaluated by the model which simulates the carbon nanoprobe system, and thus we can predict the influence of various parameters that affect electrochemical properties of carbon nanoprobe systems. With these models, quantitative analysis of interfacial physicochemical properties with nanopipette-based systems becomes more feasible.
1. Hansma, P.; Drake, B.; Marti, O.; Gould, S.; Prater, C., The Scanning Ion-Conductance Microscope. Science 1989, 243, 641-643.
2. Rheinlaender, J.; Schaffer, T. E., Lateral Resolution and Image Formation in Scanning Ion Conductance Microscopy. Anal. Chem. 2015, 87, 7117-24.
3. Sanchez, D.; Anand, U.; Gorelik, J.; Benham, C. D.; Bountra, C.; Lab, M.; Klenerman, D.; Birch, R.; Anand, P.; Korchev, Y., Localized and Non-Contact Mechanical Stimulation of Dorsal Root Ganglion Sensory Neurons Using Scanning Ion Conductance Microscopy. J. Neurosci. Methods. 2007, 159, 26-34.
4. Perry, D.; Paulose Nadappuram, B.; Momotenko, D.; Voyias, P. D.; Page, A.; Tripathi, G.; Frenguelli, B. G.; Unwin, P. R., Surface Charge Visualization at Viable Living Cells. J. Am. Chem. Soc. 2016, 138, 3152-60.
5. Babakinejad, B.; Jonsson, P.; Lopez Cordoba, A.; Actis, P.; Novak, P.; Takahashi, Y.; Shevchuk, A.; Anand, U.; Anand, P.; Drews, A.; Ferrer-Montiel, A.; Klenerman, D.; Korchev, Y. E., Local Delivery of Molecules from a Nanopipette for Quantitative Receptor Mapping on Live Cells. Anal. Chem. 2013, 85, 9333-42.
6. Ying, Y. L.; Hu, Y. X.; Gao, R.; Yu, R. J.; Gu, Z.; Lee, L. P.; Long, Y. T., Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells. J. Am. Chem. Soc. 2018, 140, 5385-5392.
7. Page, A.; Kang, M.; Armitstead, A.; Perry, D.; Unwin, P. R., Quantitative Visualization of Molecular Delivery and Uptake at Living Cells with Self-Referencing Scanning Ion Conductance Microscopy-Scanning Electrochemical Microscopy. Anal. Chem. 2017, 89, 3021-3028.
8. Chen, C. C.; Zhou, Y.; Morris, C. A.; Hou, J.; Baker, L. A., Scanning Ion Conductance Microscopy Measurement of Paracellular Channel Conductance in Tight Junctions. Anal. Chem. 2013, 85, 3621-8.
9. McKelvey, K.; Kinnear, S. L.; Perry, D.; Momotenko, D.; Unwin, P. R., Surface Charge Mapping with a Nanopipette. J. Am. Chem. Soc. 2014, 136, 13735-44.
10. Michalak, M.; Kurel, M.; Jedraszko, J.; Toczydlowska, D.; Wittstock, G.; Opallo, M.; Nogala, W., Voltammetric pH Nanosensor. Anal. Chem. 2015, 87, 11641-5.
11. Zhou, L.; Gong, Y.; Hou, J.; Baker, L. A., Quantitative Visualization of Nanoscale Ion Transport. Anal. Chem. 2017, 89, 13603-13609.
12. Zhou, L.; Gong, Y.; Sunq, A.; Hou, J.; Baker, L. A., Capturing Rare Conductance in Epithelia with Potentiometric-Scanning Ion Conductance Microscopy. Anal. Chem. 2016, 88, 9630-9637.
13. Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O., Scanning Electrochemical Microscopy. Introduction and Principles. Anal. Chem. 1989, 61, 132-138.
14. Takahashi, Y.; Shevchuk, A.; Novak, P.; Murakami, Y.; Shiku, H.; Korchev, Y.; Matsue, T., Simultaneous Noncontact Topography and Electrochemical Imaging by SECM SICM Featuring Ion Current Feedback Regulation. J. Am. Chem. Soc. 2010, 132, 10118-10126.
15. Morris, C. A.; Chen, C. C.; Baker, L. A., Transport of Redox Probes through Single Pores Measured by Scanning Electrochemical-Scanning Ion Conductance Microscopy (SECM-SICM). Analyst 2012, 137, 2933-8.
16. O'Connell, M. A.; Wain, A. J., Mapping Electroactivity at Individual Catalytic Nanostructures using High-Resolution Scanning Electrochemical-Scanning Ion Conductance Microcopy. Anal. Chem. 2014, 86, 12100-7.
17. O'Connell, M. A.; Lewis, J. R.; Wain, A. J., Electrochemical Imaging of Hydrogen Peroxide Generation at Individual Gold Nanoparticles. Chem. Commun. 2015, 51, 10314-7.
18. Amemiya, S.; Chen, R.; Nioradze, N.; Kim, J., Scanning Electrochemical Microscopy of Carbon Nanomaterials and Graphite. Acc. Chem. Res. 2016, 49, 2007-14.
19. Schorr, N. B.; Jiang, A. G.; Rodriguez-Lopez, J., Probing Graphene Interfacial Reactivity via Simultaneous and Colocalized Raman-Scanning Electrochemical Microscopy Imaging and Interrogation. Anal. Chem. 2018, 90, 7848-7854.
20. Joshi, V. S.; Sheet, P. S.; Cullin, N.; Kreth, J.; Koley, D., Real-Time Metabolic Interactions between Two Bacterial Species Using a Carbon-Based pH Microsensor as a Scanning Electrochemical Microscopy Probe. Anal. Chem. 2017, 89, 11044-11052.
21. Williams, C. G.; Edwards, M. A.; Colley, A. L.; Macpherson, J. V.; Unwin, P. R., Scanning Micropipet Contact Method for High-Resolution Imaging of Electrode Surface Redox Activity. Anal. Chem. 2009, 81, 2486-2495.
22. Anderson, S. E.; Bau, H. H., Electrical Detection of Cellular Penetration During Microinjection with Carbon Nanopipettes. Nanotechnology 2014, 25, 245102.
23. Schrlau, M. G.; Falls, E. M.; Ziober, B. L.; Bau, H. H., Carbon Nanopipettes for Cell Probes and Intracellular Injection. Nanotechnology 2008, 19, 015101.
24. Seifert, J.; Rheinlaender, J.; Novak, P.; Korchev, Y. E.; Schaffer, T. E., Comparison of Atomic Force Microscopy and Scanning Ion Conductance Microscopy for Live Cell Imaging. Langmuir 2015, 31, 6807-13.
25. McKelvey, K.; Nadappuram, B. P.; Actis, P.; Takahashi, Y.; Korchev, Y. E.; Matsue, T.; Robinson, C.; Unwin, P. R., Fabrication, Characterization, and Functionalization of Dual Carbon Electrodes as Probes for Scanning Electrochemical Microscopy (SECM). Anal. Chem. 2013, 85, 7519-26.
26. Kim, B. M.; Murray, T.; Bau, H. H., The Fabrication of Integrated Carbon Pipes with Sub-Micron Diameters. Nanotechnology 2005, 16, 1317-1320.
27. Sen, M.; Takahashi, Y.; Matsumae, Y.; Horiguchi, Y.; Kumatani, A.; Ino, K.; Shiku, H.; Matsue, T., Improving the Electrochemical Imaging Sensitivity of Scanning Electrochemical Microscopy-Scanning Ion Conductance Microscopy by Using Electrochemical Pt Deposition. Anal. Chem. 2015, 87, 3484-9.
28. Kang, M.; Momotenko, D.; Page, A.; Perry, D.; Unwin, P. R., Frontiers in Nanoscale Electrochemical Imaging: Faster, Multifunctional, and Ultrasensitive. Langmuir 2016, 32, 7993-8008.
29. Perry, D.; Botros, R. A.; Momotenko, D.; Kinnear, S. L.; Unwin, P. R., Simultaneous Nanoscale Surface Charge and Topographical Mapping. ACS. Nano. 2015, 9, 7266-7276.
30. Page, A.; Perry, D.; Young, P.; Mitchell, D.; Frenguelli, B. G.; Unwin, P. R., Fast Nanoscale Surface Charge Mapping with Pulsed-Potential Scanning Ion Conductance Microscopy. Anal. Chem. 2016, 88, 10854-10859.
31. Zhu, C.; Zhou, L.; Choi, M.; Baker, L. A., Mapping Surface Charge of Individual Microdomains with Scanning Ion Conductance Microscopy. ChemElectroChem 2018, 5, 2986-2990.
32. Fu, Y.; Tokuhisa, H.; Baker, L. A., Nanopore DNA Sensors Based on Dendrimer-Modified Nanopipettes. Chem. Commun. 2009, 4877-9.
33. Wang, Y.; Kececi, K.; Mirkin, M. V.; Mani, V.; Sardesai, N.; Rusling, J. F., Resistive-Pulse Measurements with Nanopipettes: Detection of Au Nanoparticles and Nanoparticle-Bound Anti-Peanut IgY. Chem. Sci. 2013, 4, 655-663.
34. Li, B. R.; Chen, C. C.; Kumar, U. R.; Chen, Y. T., Advances in Nanowire Transistors for Biological Analysis and Cellular Investigation. Analyst 2014, 139, 1589-608.
35. Qin, M.; Hou, S.; Wang, L.; Feng, X.; Wang, R.; Yang, Y.; Wang, C.; Yu, L.; Shao, B.; Qiao, M., Two Methods for Glass Surface Modification and Their Application in Protein Immobilization. Colloids. Surf. B. 2007, 60, 243-9.
36. Yu, Y.; Noel, J. M.; Mirkin, M. V.; Gao, Y.; Mashtalir, O.; Friedman, G.; Gogotsi, Y., Carbon Pipette-Based Electrochemical Nanosampler. Anal. Chem. 2014, 86, 3365-72.
37. Umehara, S.; Karhaneka, M.; Davisb, R. W.; Pourmand, N., Label-Free Biosensing with Functionalized Nanopipette Probes. Proc. Natl. Acad. Sci. U.S.A. 2008, 106, 4611-4616.
38. Son, D.; Park, S. Y.; Kim, B.; Koh, J. T.; Kim, T. H.; An, S.; Jang, D.; Kim, G. T.; Jhe, W.; Hong, S., Nanoneedle Transistor-Based Sensors for the Selective Detection of Intracellular Calcium Ions. ACS. Nano. 2011, 5, 3888-3895.
39. Liming, Y.; Andreas, B.; R., A. M.; K., Y. E.; David, K., Programmable Delivery of DNA through a Nanopipet. Anal. Chem. 2002, 74, 1380-1385.
40. Andreas, B.; Dejian, Z.; Liming, Y.; Chris, A.; David, K., A Simple Voltage Controlled Enzymatic Nanoreactor Produced in the Tip of a Nanopipet. Nano. Lett. 2004, 4.
41. Liang, Y.; Huang, J.; Zang, P.; Kim, J.; Hu, W., Molecular Layer Deposition of APTES on Silicon Nanowire Biosensors: Surface Characterization, Stability and pH Response. Appl. Surf. Sci. 2014, 322, 202-208.
42. Wei, C.; Bard, A. J., Current Rectification at Quartz Nanopipet Electrodes. Anal. Chem. 1997, 69, 4627-4633.
43. Liu, J.; Kvetny, M.; Feng, J.; Wang, D.; Wu, B.; Brown, W.; Wang, G., Surface Charge Density Determination of Single Conical Nanopores Based on Normalized Ion Current Rectification. Langmuir 2012, 28, 1588-95.
44. Liu, S.; Dong, Y.; Zhao, W.; Xie, X.; Ji, T.; Yin, X.; Liu, Y.; Liang, Z.; Momotenko, D.; Liang, D.; Girault, H. H.; Shao, Y., Studies of Ionic Current Rectification Using Polyethyleneimines Coated Glass Nanopipettes. Anal. Chem. 2012, 84, 5565-73.
45. Shi, W.; Sa, N.; Thakar, R.; Baker, L. A., Nanopipette Delivery: Influence of Surface Charge. Analyst 2015, 140, 4835-42.
46. Wu, J.; Risalvato, F. G.; Ke, F.-S.; Pellechia, P. J.; Zhou, X.-D., Electrochemical Reduction of Carbon Dioxide I. Effects of the Electrolyte on the Selectivity and Activity with Sn Electrode. J. Electrochem. Soc. 2012, 159, F353-F359.
47. Sulpizi, M.; Gaigeot, M.-P.; Sprik, M., The Silica–Water Interface: How the Silanols Determine the Surface Acidity and Modulate the Water Properties. J. Chem. Theory Comput. 2012, 8, 1037-1047.
48. Siwy, Z. S., Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater. 2006, 16, 735-746.
49. Aissaoui, N.; Bergaoui, L.; Landoulsi, J.; Lambert, J. F.; Boujday, S., Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption. Langmuir 2012, 28, 656-65.
50. Kubeil, C.; Bund, A., The Role of Nanopore Geometry for the Rectification of Ionic Currents. J. Phys. Chem. 2011, 115, 7866-7873.
51. White, H. S.; Bund, A., Ion Current Rectification at Nanopores in Glass Membranes. Langmuir 2008, 24, 2212-2218.
52. Cervera, J.; Schiedt, B.; Neumann, R.; Mafe, S.; Ramirez, P., Ionic Conduction, Rectification, and Selectivity in Single Conical Nanopores. J. Chem. Phys. 2006, 124, 104706.
53. Lan, W. J.; Edwards, M. A.; Luo, L.; Perera, R. T.; Wu, X.; Martin, C. R.; White, H. S., Voltage-Rectified Current and Fluid Flow in Conical Nanopores. Acc. Chem. Res. 2016, 49, 2605-2613.
54. Kovarik, M. L.; Zhou, K.; Jacobson, S. C., Effect of Conical Nanopore Diameter on Ion Current Rectification. J. Phys. Chem. 2009, 113, 15960-15966.
55. Sa, N.; Lan, W. J.; Shi, W.; Baker, L. A., Rectification of Ion Current in Nanopipettes by External Substrates. ACS. Nano. 2013, 7, 11272-11282.
56. Chen, C. C.; Zhou, Y.; Baker, L. A., Scanning Ion Conductance Microscopy. Annu. Rev. Anal. Chem. 2012, 5, 207-28.
57. Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J., Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015. Chem. Rev. 2016, 116, 13234-13278.
58. Souto, R.; Lamaka, S. V.; González, S., Uses of Scanning Electrochemical Microscopy in Corrosion Research. Badajoz : Formatex Research Center: 2010; Vol. 3, p 1769-1780.
59. Molina, J.; Fernández, J.; Cases, F., Scanning Electrochemical Microscopy for the Analysis and Patterning of Graphene Materials: A Review. Synth. Met. 2016, 222, 145-161.
60. Clausmeyer, J.; Masa, J.; Ventosa, E.; Ohl, D.; Schuhmann, W., Nanoelectrodes Reveal the Electrochemistry of Single Nickelhydroxide Nanoparticles. Chem. Commun. 2016, 52, 2408-11.
61. Takahashi, Y.; Shevchuk, A. I.; Novak, P.; Zhang, Y.; Ebejer, N.; Macpherson, J. V.; Unwin, P. R.; Pollard, A. J.; Roy, D.; Clifford, C. A.; Shiku, H.; Matsue, T.; Klenerman, D.; Korchev, Y. E., Multifunctional Nanoprobes for Nanoscale Chemical Imaging and Localized Chemical Delivery at Surfaces and Interfaces. Angew. Chem. Int. Ed. 2011, 50, 9638-42.
62. Xiong, J.; Chen, Q.; Edwards, M. A.; White, H. S., Ion Transport within High Electric Fields in Nanogap Electrochemical Cells. ACS. Nano. 2015, 9, 8520-9.
63. 吳文馨. 功能性奈米滴管探針之製備於電化學分析之應用. 國立成功大學, 化學所, 2019.
64. Bishop, G. W.; Ahiadu, B. K.; Smith, J. L.; Patterson, J. D., Use of Redox Probes for Characterization of Layer-by-Layer Gold Nanoparticle-Modified Screen-Printed Carbon Electrodes. J. Electrochem. Soc. 2016, 164, B23-B28.
65. Cannes, C.; Kanoufi, F.; Bard, A. J., Cyclic Voltammetry and Scanning Electrochemical Microscopy of Ferrocenemethanol at Monolayer and Bilayer-Modified Gold Electrodes. J. Electroanal. Chem. 2003, 547, 83-91.
66. Bard, A. J.; Faulkner, L. R., Electrochemical methods: Fundamentals and Applications. 2nd ed.; 2000.
校內:2024-08-26公開