| 研究生: |
林倩如 Lin, Chen-ju |
|---|---|
| 論文名稱: |
氫氧基磷灰石/膠原蛋白/透明質酸複合微粒對於間葉幹細胞骨分化之影響 Hydroxyapatite/collagen/hyaluronan composite spheres for osteogenesis of mesenchymal stem cells |
| 指導教授: |
黃玲惠
Huang, Lynn L.H. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 微粒 、氫氧基磷灰石 、骨分化 、間葉幹細胞 、貼附 |
| 外文關鍵詞: | hydroxyapatite, spheres, adhesion, mesenchymal stem cells, osteogenesis |
| 相關次數: | 點閱:75 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
製備含不同濃度氫氧基磷灰石(HP)的氫氧基磷灰石/膠原蛋白/透明質酸複合微粒(HC1HP、HC5HP、HC10HP、HC30HP)並利用由胎盤取得的胎盤間葉幹細胞(hPDMSC)來評估與細胞交互作用。使用於本實驗中之氫氧基磷灰石顆粒經X-ray 繞射鑑定,平均粒徑經測量約為0.3μm。hPDMSC 在低於含0.1mg/ml HP 之培養基下可正常增生。含HP 濃度越高的微粒,在濕潤環境中越不易變形。顯示HP 使基質具較好抗壓力及機械性。hPDMSC 在膠原蛋白表面貼附情形較氫氧基磷灰石良好。hPDMSC 可以貼附於含低濃度HP 之複合介面(HC1HP,HC5HP)。透過結合旋轉動態培養的方式,hPDMSC 可以貼附於含低濃度HP 之複合微粒(HC1HP, HC5HP)。在一般DMEM-10%FBS 培養下,HC10HP、HC5HP 組別相較於其他組別,鹼性磷酸酶活性在培養第7 天或第10 天時有明顯上升之情形,而在骨誘導培養基下,HC1HP、HC5HP、HC10HP 的組別,鹼性磷酸酶活性提前在第7 天時產生明顯高峰。以Real-time PCR 觀察不同介面上基因表現之差異。相較於HC0HP 之組別,在第3 天、7 天時,hPDMSC 於HC1HP之Osterix 表現量為10 倍;而在第14 天天時,Osteopontin 表現量接近15 倍,鹼性磷酸酶表現量超過5 倍。
Hydroxyapatite/ collagen/ hyaluronan composite spheres (HC0HP、HC1HP、HC5HP、HC10HP、HC30HP) containing different concentraion of hydroxyapatite were prepared and evaluate the interaction with cell by placenta derived mesenchymal stem cells(hPDMSC). The HP powder was characterized by the XRD method, and the average diameter was determined to be 0.3μm. hPDMSC proliferation was not interrupted by lower than 0.1mg/ml HP in DMEM. The spheres with higher concentration of HP (HC5HP, HC10HP, HC30HP ) maintain shape better in wet condition.hPDMSC adheres better on Col Surface when compared to HP coating surface. PDMSC can adhere on composite 2D coating with lower concentration HP. (HC1HP, HC5HP).Combining rotation method , hPDMSC can adhere on composite spheres with lower HP concentration(HC1HP, HC5HP). Alkaline phosphatase(ALP) activity significantly increased in HC10HP and HC5HP group at the 7th day culturing with DMEM. When HC10HP and HC5HP group culturing with osteogenic medium, ALP activity increased significantly t the 3rd day before normal matrix maturation stage. Moreover, comparing to HC0HP surface, hPDMSC culturing on HC1HP 、HC5HP surface, represent 10 folds osterix expression at the 3rd , 7th days, nearly 15 folds osteopontin expression and 5 folds alkaline phophatase expression at the 14th days.
1. Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p.920-6.
2. Urist, M.R., Bone: formation by autoinduction. Science, 1965. 150(698): p.893-9.
3. Winter, G.D., Heterotopic bone formation in a synthetic sponge. Proc R SocMed, 1970. 63(11 Part 1): p. 1111-5.
4. Ripamonti, U., The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral. J Bone Joint Surg Am, 1991. 73(5): p. 692-703.
5. Ohgushi, H., V.M. Goldberg, and A.I. Caplan, Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res, 1989. 7(4): p.568-78.
6. Habibovic, P. and K. de Groot, Osteoinductive biomaterials--properties and relevance in bone repair. J Tissue Eng Regen Med, 2007. 1(1): p. 25-32.
7. Toole, B.P., Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer, 2004. 4(7): p. 528-39.
8. Huang, L., et al., The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. J Biomed Mater Res A, 2003. 66(4): p. 880-4.
9. Lynch, M.P., et al., The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res, 1995. 216(1): p. 35-45.
10. Mizuno, M., R. Fujisawa, and Y. Kuboki, Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J Cell Physiol, 2000. 184(2): p. 207-13.
11. George, J., Y. Kuboki, and T. Miyata, Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds. Biotechnol Bioeng, 2006. 95(3): p. 404-12. Kim, H.W., H.J. Gu, and H.H. Lee, Microspheres of collagen-apatite nanocomposites with osteogenic potential for tissue engineering. Tissue Eng, 2007. 13(5): p. 965-73.
13. Yoon, B.H., H.E. Kim, and H.W. Kim, Bioactive microspheres produced from gelatin-siloxane hybrids for bone regeneration. J Mater Sci Mater Med, 2008.19(6): p. 2287-92.
14. Lee, H.H., et al., Preparation of hydroxyapatite spheres with an internal cavity as a scaffold for hard tissue regeneration. J Mater Sci Mater Med, 2008. 19(9):
p. 3029-34.
15. Barrias, C.C., et al., Proliferation, activity, and osteogenic differentiation of bone marrow stromal cells cultured on calcium titanium phosphate microspheres. J Biomed Mater Res A, 2005. 72(1): p. 57-66.
16. Sakaguchi, Y., et al., Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum, 2005. 52(8): p. 2521-9.
17. Lee, O.K., et al., Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 2004. 103(5): p. 1669-75.
18. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002. 13(12): p. 4279-95.
19. De Bari, C., et al., Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 2001. 44(8): p. 1928-42.
20. Yen, B.L., et al., Isolation of multipotent cells from human term placenta. Stem Cells, 2005. 23(1): p. 3-9.
21. McKay, R., Stem cells in the central nervous system. Science, 1997. 276(5309):p. 66-71.
22. Minguell, J.J., A. Erices, and P. Conget, Mesenchymal stem cells. Exp Biol Med (Maywood), 2001. 226(6): p. 507-20.
23. Kolf, C.M., E. Cho, and R.S. Tuan, Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther, 2007. 9(1): p. 204.
24. Parolini, O., et al., Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta
Derived Stem Cells. Stem Cells, 2008. 26(2): p. 300-11.
25. Hughes, F.J., et al., Effects of growth factors and cytokines on osteoblast differentiation. Periodontol 2000, 2006. 41: p. 48-72.
26. Stein, G.S. and J.B. Lian, Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev, 1993. 14(4): p. 424-42.
27. Franceschi, R.T., The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit Rev Oral Biol Med, 1999. 10(1): p. 40-57.
104
28. zur Nieden, N.I., G. Kempka, and H.J. Ahr, In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation, 2003. 71(1):
p. 18-27.
29. Schmitt, J.M., et al., Bone morphogenetic proteins: an update on basic biology and clinical relevance. J Orthop Res, 1999. 17(2): p. 269-78.
30. White, C., E. Gardiner, and J. Eisman, Tissue specific and vitamin D responsive gene expression in bone. Mol Biol Rep, 1998. 25(1): p. 45-61.
31. Marom, R., et al., Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. J Cell Physiol, 2005. 202(1): p. 41-8.
32. Siffert, R.S., The role of alkaline phosphatase in osteogenesis. J Exp Med, 1951. 93(5): p. 415-26.
33. Chenu, C., et al., Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells. J
Cell Biol, 1994. 127(4): p. 1149-58.
34. Stein, G.S., et al., The osteocalcin gene: a model for multiple parameters of skeletal-specific transcriptional control. Mol Biol Rep, 1997. 24(3): p. 185-96.
35. Lian, J.B., et al., Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord, 2006. 7(1-2): p. 1-16.
36. Tominaga, H., et al., Expression of osterix inhibits bone morphogenetic protein-induced chondrogenic differentiation of mesenchymal progenitor cells.
J Bone Miner Metab, 2009. 27(1): p. 36-45.
37. Nakashima, K., et al., The novel zinc finger containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell,
2002. 108(1): p. 17-29.
38. Jundt, G., et al., Osteonectin--a differentiation marker of bone cells. Cell Tissue Res, 1987. 248(2): p. 409-15.105