| 研究生: |
陸瑀岑 Lu, Yu-Chen |
|---|---|
| 論文名稱: |
奈米生醫玻璃複合聚乙烯醇之水凝膠特性研究 The Study of Nano Bioactive Glass/Polyvinyl Alcohol Composite Hydrogels |
| 指導教授: |
李澤民
Lee, Tzer-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 幾丁聚醣 、牙周再生薄膜 、聚乙烯醇 、生醫玻璃 、熱感應性水凝膠 |
| 外文關鍵詞: | chitosan, periodontal regeneration membrane, polyvinyl alcohol, bioactive glass, thermosensitive hydrogel |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在臨床牙科的牙周再生手術中,常會運用牙周再生薄膜防止傷口遭受細菌或纖維母細胞侵入,同時讓營養素和血液通過,並且引導齒槽骨(alveolar bone)再生。幾丁聚醣(CS)具有無毒性、生物相容性、抗菌性等優點。聚乙烯醇(polyvinyl alcohol,PVA)具有生物降解性、高親水性、低沾黏等優點。介孔生醫玻璃(mesoporous bioactive glass)擁有生物親和性和優異的攜藥能力,可作為奈米載體運用於牙科中的藥物輸送。
本研究第一部分先將PVA混入CS基底的熱感應性水凝膠(thermosensitive hydrogel)。結果顯示,PVA添加能夠提高薄膜的韌性、生物親和性,經由降解測試證明,PVA/CS能維持薄膜特性長達8週。第二部分再藉由溶膠凝膠法將0, 1, 2, 4 wt%生醫玻璃(bioactive glass,BG)粉末加入4% PVA/CS水凝膠,形成BG/4% PVA水凝膠薄膜。研究結果顯示,BG具有介孔結構和良好的仿生(biomimetic)能力,並且成功添加入4% PVA/CS薄膜之中,提升了薄膜的吸水性,以及增加了薄膜的抗拉強度、伸長率和韌性,還有穩定的降解速率,而且不會改變薄膜的厚度和結構。
結合BG與PVA/CS基底的水凝膠可吸收性牙周再生薄膜,擁有良好的生物親和性,若將此材料應用於牙科再生手術,可防止細菌感染手術傷口,以及阻隔增生過於迅速的軟組織,同時能夠提供足夠的空間讓骨組織再生、加速傷口癒合。這種三元共聚的水凝膠薄膜在牙周再生手術中,將會是極具發展潛力的牙周再生薄膜材料,或是在臨床應用上會有極大的潛力。
In periodontal regeneration surgery, periodontal regeneration membranes are often used to prevent bacteria or fibroblasts from invading while allowing nutrients and blood to pass through. Chitosan (CS) possesses non-toxicity, biodegradation, biocompatibility, antibacterial property. Polyvinyl alcohol (PVA) offers the advantages of biodegradability, high hydrophilicity, and low adhesion. Mesoporous bioactive glass (MBG) provides proper manufacturability, biocompatibility, and drug delivery ability.
The first part of this thesis, CS thermosensitive hydrogel was blending with PVA. The results indicated that PVA could enhance the toughness, biocompatibility and keep its function after 8 weeks biodegradation. In second part, 0, 1, 2, 4 wt% of nano bioactive glass (BG) had been added into 4%PVA/CS thermosensitive hydrogel by sol-gel method. The mesoporous BG was demonstrated to be biomimetic in vitro and had been successfully added into 4%PVA/CS. The addition of BG improved the swelling ability, ultimate tensile strength, elongation and toughness while remaining the structure and stable degradation rate of the BG/4% PVA film.
In conclusion, BG combining with the CS based PVA hydrogel absorbable periodontal regeneration membrane for periodontal regeneration treatment can block the invasion of bacteria or fibroblasts to prompt wound healing and accelerating bone tissue growth. PVA/CS hydrogel will be an effective material of periodontal regeneration treatment for the field of dentistry.
[1] M. C. Bottino, V. Thomas, G. Schmidt, Y. K. Vohra, T.-M. G. Chu, M. J. Kowolik, and G. M. Janowski, Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dental Materials, 2012. 28(7): p. 703-721.
[2] M. Nakashima and A. H. Reddi, The application of bone morphogenetic proteins to dental tissue engineering. Nature biotechnology, 2003. 21(9): p. 1025-1032.
[3] W. V. Giannobile and M. J. Somerman, Growth and amelogenin‐like factors in periodontal wound healing. A systematic review. Annals of Periodontology, 2003. 8(1): p. 193-204.
[4] R. Hosokawa, K. Kikuzaki, T. Kimoto, T. Matsuura, D. Chiba, M. Wadamoto, Y. Sato, M. Maeda, A. Sano, and Y. Akagawa, Controlled local application of basic fibroblast growth factor (FGF‐2) accelerates the healing of GBR: An experimental study in beagle dogs. Clinical oral implants research, 2000. 11(4): p. 345-353.
[5] M. Taba Jr, Q. Jin, J. Sugai, and W. Giannobile, Current concepts in periodontal bioengineering. Orthodontics & craniofacial research, 2005. 8(4): p. 292-302.
[6] R. E. Jung, R. Glauser, P. Schärer, C. H. Hämmerle, H. F. Sailer, and F. E. Weber, Effect of rhBMP‐2 on guided bone regeneration in humans: A randomized, controlled clinical and histomorphometric study. Clinical oral implants research, 2003. 14(5): p. 556-568.
[7] T. Karring, Regenerative periodontal therapy. Journal of the International Academy of Periodontology, 2000. 2(4): p. 101-109.
[8] S. Liao, W. Wang, M. Uo, S. Ohkawa, T. Akasaka, K. Tamura, F. Cui, and F. Watari, A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials, 2005. 26(36): p. 7564-7571.
[9] S. Liao, F. Watari, Y. Zhu, M. Uo, T. Akasaka, W. Wang, G. Xu, and F. Cui, The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dental Materials, 2007. 23(9): p. 1120-1128.
[10] J. H. Southerland, G. W. Taylor, K. Moss, J. D. Beck, and S. Offenbacher, Commonality in chronic inflammatory diseases: periodontitis, diabetes, and coronary artery disease. Periodontology 2000, 2006. 40(1): p. 130-143.
[11] F. Nishimura, Y. Iwamoto, and Y. Soga, The periodontal host response with diabetes. Periodontology 2000, 2007. 43(1): p. 245-253.
[12] J. P. Vacanti and R. Langer, Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet, 1999. 354: p. S32-S34.
[13] H.-L. Wang and J. Cooke, Periodontal regeneration techniques for treatment of periodontal diseases. Dental Clinics, 2005. 49(3): p. 637-659.
[14] J. Wennstrom and G. P. Pini Prato, Mucogingival therapy periodontal plastic surgery, in TEXT-BOOK OF CLINICAL PERIODONTOLOGY 4TH ED. 2003, Blackwell Munksgaard. p. 576-649.
[15] K. G. Murphy and J. C. Gunsolley, Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Annals of periodontology, 2003. 8(1): p. 266-302.
[16] P. Gentile, V. Chiono, C. Tonda‐Turo, A. M. Ferreira, and G. Ciardelli, Polymeric membranes for guided bone regeneration. Biotechnology journal, 2011. 6(10): p. 1187-1197.
[17] G. Polimeni, K. T. Koo, G. A. Pringle, A. Agelan, F. F. Safadi, and U. M. Wikesjö, Histopathological observations of a polylactic acid‐based device intended for guided bone/tissue regeneration. Clinical implant dentistry and related research, 2008. 10(2): p. 99-105.
[18] A. Sculean, D. Nikolidakis, and F. Schwarz, Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials–biological foundation and preclinical evidence: a systematic review. Journal of clinical periodontology, 2008. 35: p. 106-116.
[19] J. Behring, R. Junker, X. F. Walboomers, B. Chessnut, and J. A. Jansen, Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology, 2008. 96: p. 1-11.
[20] A. Melcher, On the repair potential of periodontal tissues. Journal of periodontology, 1976. 47(5): p. 256-260.
[21] R. T. Kao, S. Nares, and M. A. Reynolds, Periodontal regeneration–intrabony defects: a systematic review from the AAP regeneration workshop. Journal of periodontology, 2015. 86: p. S77-S104.
[22] J. Gottlow, S. Nyman, J. Lindhe, T. Karring, and J. Wennström, New attachment formation in the human periodontium by guided tissue regeneration Case reports. Journal of clinical periodontology, 1986. 13(6): p. 604-616.
[23] H. Falk, L. Laurell, N. Ravald, A. Teiwik, and R. Persson, Guided tissue regeneration therapy of 203 consecutively treated intrabony defects using a bioabsorbable matrix barrier. Clinical and radiographic findings. Journal of Periodontology, 1997. 68(6): p. 571-581.
[24] P. Cortellini, G. P. Prato, and M. S. Tonetti, Periodontal regeneration of human intrabony defects with bioresorbable membranes. A controlled clinical trial. Journal of Periodontology, 1996. 67(3): p. 217-223.
[25] N. Hild, P. N. Tawakoli, J. G. Halter, B. Sauer, W. Buchalla, W. J. Stark, and D. Mohn, pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass. Acta biomaterialia, 2013. 9(11): p. 9118-9125.
[26] J. Mota, N. Yu, S. G. Caridade, G. M. Luz, M. E. Gomes, R. L. Reis, J. A. Jansen, X. F. Walboomers, and J. F. Mano, Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta biomaterialia, 2012. 8(11): p. 4173-4180.
[27] N. Donos, L. Kostopoulos, and T. Karring, Alveolar ridge augmentation using a resorbable copolymer membrane and autogenous bone grafts: an experimental study in the rat. Clinical Oral Implants Research, 2002. 13(2): p. 203-213.
[28] B. Coonts, S. Whitman, M. O'Donnell, A. Polson, G. Bogle, S. Garrett, D. Swanbom, J. Fulfs, P. Rodgers, and G. Southard, Biodegradation and biocompatibility of a guided tissue regeneration barrier membrane formed from a liquid polymer material. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1998. 42(2): p. 303-311.
[29] L. T. Hou, J. J. Yan, A. Y. M. Tsai, C. S. Lao, S. J. Lin, and C. M. Liu, Polymer‐assisted regeneration therapy with Atrisorb® barriers in human periodontal intrabony defects. Journal of clinical periodontology, 2004. 31(1): p. 68-74.
[30] M. E. M. Felipe, P. F. Andrade, M. F. Grisi, S. L. Souza, M. Taba Jr, D. B. Palioto, and A. B. Novaes Jr, Comparison of two surgical procedures for use of the acellular dermal matrix graft in the treatment of gingival recessions: a randomized controlled clinical study. Journal of periodontology, 2007. 78(7): p. 1209-1217.
[31] I. J. Budiarso, N. D. W. Rini, A. Tsalsabila, M. D. Birowosuto, and A. Wibowo, Chitosan-Based Smart Biomaterials for Biomedical Applications: Progress and Perspectives. ACS Biomaterials Science & Engineering, 2023. 9(6): p. 3084-3115.
[32] A. Kasaj, C. Reichert, H. Götz, B. Röhrig, R. Smeets, and B. Willershausen, In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration. Head & Face Medicine, 2008. 4(1): p. 22.
[33] M. Toledano, J. L. Gutierrez-Pérez, A. Gutierrez-Corrales, A. Serrera-Figallo María, M. Toledano-Osorio, J. I. Rosales-Leal, M. Aguilar, R. Osorio, and D. Torres-Lagares, Novel non-resorbable polymeric-nanostructured scaffolds for guided bone regeneration. Clinical Oral Investigations, 2020. 24(6): p. 2037-2049.
[34] P. Eickholz, B. Pretzl, R. Holle, and T.-S. Kim, Long-Term Results of Guided Tissue Regeneration Therapy With Non-Resorbable and Bioabsorbable Barriers. III. Class II Furcations After 10 Years. Journal of Periodontology, 2006. 77(1): p. 88-94.
[35] N. Annabi, A. Tamayol, J. A. Uquillas, M. Akbari, L. E. Bertassoni, C. Cha, G. Camci-Unal, M. R. Dokmeci, N. A. Peppas, and A. Khademhosseini, 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Advanced Materials, 2014. 26(1): p. 85-124.
[36] J. Thiele, Y. Ma, S. M. C. Bruekers, S. Ma, and W. T. S. Huck, 25th Anniversary Article: Designer Hydrogels for Cell Cultures: A Materials Selection Guide. Advanced Materials, 2014. 26(1): p. 125-148.
[37] D. L. Alge and K. S. Anseth, Lighting the way. Nature Materials, 2013. 12(11): p. 950-952.
[38] J. L. West, Customized cell microenvironments. Nature Materials, 2011. 10(10): p. 727-729.
[39] R. A. A. Muzzarelli, G. Barontini, and R. Rochetti, Isolation of lysozyme on chitosan. Biotechnology and Bioengineering, 1978. 20(1): p. 87-94.
[40] Y.-W. Cho, Y.-N. Cho, S.-H. Chung, G. Yoo, and S.-W. Ko, Water-soluble chitin as a wound healing accelerator. Biomaterials, 1999. 20(22): p. 2139-2145.
[41] C. C. DeMerlis and D. R. Schoneker, Review of the oral toxicity of polyvinyl alcohol (PVA). Food and Chemical Toxicology, 2003. 41(3): p. 319-326.
[42] L. L. Hench, The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 2006. 17(11): p. 967-978.
[43] J. R. Jones, Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 2013. 9(1): p. 4457-4486.
[44] S. Z. Zhou and X. G. Qiao, Synthesis of raspberry-like polymer@silica hybrid colloidal particles through biphasic sol-gel process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 553: p. 230-236.
[45] X.-Y. Sheng, W.-Y. Gong, Q. Hu, X.-f. Chen, and Y.-M. Dong, Mineral formation on dentin induced by nano-bioactive glass. Chinese Chemical Letters, 2016. 27(9): p. 1509-1514.
[46] I.-H. Chen, T.-M. Lee, and C.-L. Huang, Biopolymers Hybrid Particles Used in Dentistry. Gels, 2021. 7(1): p. 31.
[47] R. Asmatulu, 14 - Nanocoatings for corrosion protection of aerospace alloys, in Corrosion Protection and Control Using Nanomaterials, V.S. Saji and R. Cook, Editors. 2012, Woodhead Publishing. p. 357-374.
[48] K. Zheng and A. R. Boccaccini, Sol-gel processing of bioactive glass nanoparticles: A review. Advances in Colloid and Interface Science, 2017. 249: p. 363-373.
[49] C.-L. Huang, Y.-B. Chen, Y.-L. Lo, and Y.-H. Lin, Development of chitosan/β-glycerophosphate/glycerol hydrogel as a thermosensitive coupling agent. Carbohydrate Polymers, 2016. 147: p. 409-414.
[50] H. Y. Zhou, L. J. Jiang, P. P. Cao, J. B. Li, and X. G. Chen, Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydrate Polymers, 2015. 117: p. 524-536.
[51] C.-L. Huang, W. Fang, I. H. Chen, and T.-Y. Hung, Manufacture and biomimetic mineral deposition of nanoscale bioactive glasses with mesoporous structures using sol-gel methods. Ceramics International, 2018. 44(14): p. 17224-17229.
[52] C. Luo, A. Guo, Y. Zhao, and X. Sun, A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydrate Polymers, 2022. 286: p. 119268.
[53] W. Zhang, C. Ling, A. Zhang, H. Liu, Y. Jiang, X. Li, R. Sheng, Q. Yao, and J. Chen, An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration. Bioactive Materials, 2020. 5(4): p. 832-843.
[54] Y. Dong, N. Pan, M. Zhu, M. Tang, Y. Wu, Z. You, X. Zhou, and M. Chen, An anti-swelling, strong and flexible wood-based composite hydrogel as strain sensor. Industrial Crops and Products, 2022. 187: p. 115491.
[55] Y. Zhang, M. Jiang, Y. Zhang, Q. Cao, X. Wang, Y. Han, G. Sun, Y. Li, and J. Zhou, Novel lignin–chitosan–PVA composite hydrogel for wound dressing. Materials Science and Engineering: C, 2019. 104: p. 110002.
[56] A. Shamloo, Z. Aghababaie, H. Afjoul, M. Jami, M. R. Bidgoli, M. Vossoughi, A. Ramazani, and K. Kamyabhesari, Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study. International Journal of Pharmaceutics, 2021. 592: p. 120068.
[57] Y. Wan, T. Cui, W. Li, C. Li, J. Xiao, Y. Zhu, D. Ji, G. Xiong, and H. Luo, Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route. Materials & Design, 2016. 99: p. 521-527.
[58] S.-P. Yang, H.-S. Wen, T.-M. Lee, and T.-S. Lui, Cell response on the biomimetic scaffold of silicon nano- and micro-topography. Journal of Materials Chemistry B, 2016. 4(10): p. 1891-1897.
[59] T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006. 27(15): p. 2907-2915.
[60] S. Panpinit, S.-a. Pongsomboon, T. Keawin, and S. Saengsuwan, Development of multicomponent interpenetrating polymer network (IPN) hydrogel films based on 2-hydroxyethyl methacrylate (HEMA), acrylamide (AM), polyvinyl alcohol (PVA) and chitosan (CS) with enhanced mechanical strengths, water swelling and antibacterial properties. Reactive and Functional Polymers, 2020. 156: p. 104739.
[61] A. Madni, R. Kousar, N. Naeem, and F. Wahid, Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. Journal of Bioresources and Bioproducts, 2021. 6(1): p. 11-25.
[62] B. H. Alrimawi, A. Bani-Jaber, and M. Al-Zweiri, Evaluation of mixed matrices of chitosan and fatty-acids filled into hard gelatin capsules as sustained-release hydrodynamically balanced systems. Journal of Drug Delivery Science and Technology, 2019. 53: p. 101175.
[63] S. N. Ayyubi, A. Purbasari, and Kusmiyati, The effect of composition on mechanical properties of biodegradable plastic based on chitosan/cassava starch/PVA/crude glycerol: Optimization of the composition using Box Behnken Design. Materials Today: Proceedings, 2022. 63: p. S78-S83.
[64] A. Aguanell, M. L. del Pozo, C. Pérez-Martín, G. Pontes, A. Bastida, A. Fernández-Mayoralas, E. García-Junceda, and J. Revuelta, Chitosan sulfate-lysozyme hybrid hydrogels as platforms with fine-tuned degradability and sustained inherent antibiotic and antioxidant activities. Carbohydrate Polymers, 2022. 291: p. 119611.
[65] S. Ren, Y. Zhou, K. Zheng, X. Xu, J. Yang, X. Wang, L. Miao, H. Wei, and Y. Xu, Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering. Bioactive Materials, 2022. 7: p. 242-253.
[66] F. A. R. Mota, S. A. P. Pereira, A. R. T. S. Araújo, M. L. C. Passos, and M. L. M. F. S. Saraiva, Biomarkers in the diagnosis of wounds infection: An analytical perspective. TrAC Trends in Analytical Chemistry, 2021. 143: p. 116405.
[67] G. Melinte, G. Selvolini, C. Cristea, and G. Marrazza, Aptasensors for lysozyme detection: Recent advances. Talanta, 2021. 226: p. 122169.
[68] H. Uchida and C. E. Ovitt, Novel impacts of saliva with regard to oral health. The Journal of Prosthetic Dentistry, 2022. 127(3): p. 383-391.
[69] Z. Tabia, S. Akhtach, K. E. Mabrouk, M. Bricha, K. Nouneh, and A. Ballamurugan, Tantalum doped SiO2-CaO-P2O5 based bioactive glasses: Investigation of in vitro bioactivity and antibacterial activities. Biomedical Glasses, 2020. 6(1): p. 10-22.
[70] A. Perardi, M. Cerrruti, and C. Morterra, Carbonate formation on sol-gel bioactive glass 58S and on Bioglass® 45S5, in Studies in Surface Science and Catalysis, A. Gamba, C. Colella, and S. Coluccia, Editors. 2005, Elsevier. p. 461-469.
[71] A. Anand, V. Lalzawmliana, V. Kumar, P. Das, K. B. Devi, A. K. Maji, B. Kundu, M. Roy, and S. K. Nandi, Preparation and in vivo biocompatibility studies of different mesoporous bioactive glasses. Journal of the Mechanical Behavior of Biomedical Materials, 2019. 89: p. 89-98.
[72] Y. P. Guo and Y. Zhou, Conversion of nacre powders to apatite in phosphate buffer solutions at low temperatures. Materials Chemistry and Physics, 2007. 106(1): p. 88-94.
[73] M. A. E. Cruz, G. C. M. Ruiz, A. N. Faria, D. C. Zancanela, L. S. Pereira, P. Ciancaglini, and A. P. Ramos, Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces. Applied Surface Science, 2016. 370: p. 459-468.
[74] C.-L. Huang, W. Fang, B.-R. Huang, Y.-H. Wang, G.-C. Dong, and T.-M. Lee, Bioactive Glass as a Nanoporous Drug Delivery System for Teicoplanin. Applied Sciences, 2020. 10(7): p. 2595.
[75] I.-H. Chen, M.-J. Lian, W. Fang, B.-R. Huang, T.-H. Liu, J.-A. Chen, C.-L. Huang, and T.-M. Lee, In Vitro Properties for Bioceramics Composed of Silica and Titanium Oxide Composites. Applied Sciences, 2019. 9(1): p. 66.
[76] J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, and K. K. Unger, Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 1994. 66(8): p. 1739-1758.
[77] K. S. W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985. 57(4): p. 603-619.
[78] M. Schumacher, P. Habibovic, and S. van Rijt, Mesoporous bioactive glass composition effects on degradation and bioactivity. Bioactive Materials, 2021. 6(7): p. 1921-1931.
[79] A. López-Noriega, D. Arcos, I. Izquierdo-Barba, Y. Sakamoto, O. Terasaki, and M. Vallet-Regí, Ordered Mesoporous Bioactive Glasses for Bone Tissue Regeneration. Chemistry of Materials, 2006. 18(13): p. 3137-3144.
[80] H. Zhao, X. Wang, A. Jin, M. Wang, Z. Wang, X. Huang, J. Dai, X. Wang, D. Lin, and S. G. F. Shen, Reducing relapse and accelerating osteogenesis in rapid maxillary expansion using an injectable mesoporous bioactive glass/fibrin glue composite hydrogel. Bioactive Materials, 2022. 18: p. 507-525.
[81] F. Baino, Copper-Doped Ordered Mesoporous Bioactive Glass: A Promising Multifunctional Platform for Bone Tissue Engineering. Bioengineering, 2020. 7(2): p. 45.
校內:不公開