| 研究生: |
鄭焙哲 Cheng, Pei-Zhe |
|---|---|
| 論文名稱: |
碳纖維表面含氧及含銅官能基之電化學行為探討 Electrochemical behavior of oxygen and copper functionalities on the surface of carbon fiber |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 多孔性碳 、電化學性質 、程溫脫附 、表面氧化物 、銅 |
| 外文關鍵詞: | Copper, Porous carbon, Electrochemical properties, Temperature programmed desorption, Surface oxygen complexes |
| 相關次數: | 點閱:96 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要欲探討活性碳經過不同處理後,對電化學行為產生之影響,本文將實驗分為兩部分:其一為藉由循環伏安法探討碳極上經硝酸氧化後其氧官能基被還原之行為。第二個則以電化學還原探討以硝酸銅鍍於碳電極上之電化學反應。
第一部分以硝酸氧化活性碳纖維布,並在氮氣下利用不同溫度鍛燒,以循環伏安法探討氧官能基在電化學系統下的反應。再以TPD分析其表面官能基之組成,往較負的電位掃瞄可還原一不穩定且不可逆之氧化官能基,而由此可估計每移除一個氧原子需要2.6個電子。在第一次還原後,並沒有相對應的氧化峰或還原峰再出現,碳上的含氧之量,可利用熱脫附原理在電化學還原後而求得。在此碳的電容量增加為170–190 F/g,而釋放CO官能基的量在1.31–1.56 mmol/g間。在釋放CO的官能基會影響電容行為的假設下,可求出平均每一釋放CO的氧官能基在每伏特下可儲存0.8個電子。
第二部分為利用電化學方法分析銅金屬於多孔性碳上,以不同氧化態存在時之電化學行為並定量之。以硝酸銅溶液將銅鍍於活性碳纖維布上,並在氮氣下以不同溫度鍛燒,以生成不同價態之氧化銅。以XRD鑑定其組成,隨著溫度的升高可發現其晶相大小會隨之成長。將電極於KOH下,利用循環伏安法由開環電位掃至–1.4V,由其還原電流大小以定量在銅CuO與Cu。在電位為0.2V時,較低氧化態的銅會被氧化為較高氧化態的CuO,而再由還原CuO的還原電流可推估出Cu2O之含量。藉此方法可用來定量銅於碳上之量。
The paper want to discuss with the oxidation state of exposed Cu deposited in porous carbon. The carbons of Cu were prepared from Cu(NO3)2 impregnation, thus we should investigate the influence of nitrate ion first. For this reason, the paper was divided into two parts:
Part 1. Carbons of different surface oxide compositions, which were prepared from HNO3 oxidation of polyacrylonitrile-based carbon fabric followed by heat treatment at different temperatures, were subjected to electrochemical response analysis using voltammetric method. Temperature programmed desorption was employed to analyze the surface oxide composition. A significant amount of unstable oxides that can be irreversibly removed with reduction using a cathodic potential sweep were found to be present on the oxidized carbons. About 2.6 electrons are required to remove one oxygen atom from the carbon surface, and this may be the first quantitative study ever reported. After the initial cathodic sweep, no irreversible reduction peak response was observed for the following electrochemical measurements. The capacitive performance of the carbons is related to the population of stable CO-desorbing complexes that can be determined with thermal desorption after the cathodic sweep. The present work has shown that the capacitance increases from 170 to 190 F/g with the increase of the CO-desorbing complex population from 1.31 to 1.56 mmol/g. This corresponds to that each stable CO-desorbing oxide is able to store 0.8 electron charge per volt within the potential window employed, suggesting the effective role of CO-desorbing oxides in improving the capacitance.
Part 2. An electrochemical method was developed to quantitatively analyze the number and oxidation state of exposed Cu deposited in porous carbon. Carbons of different Cu contents were prepared from Cu(NO3)2 impregnation followed by heat treatment at different temperatures. X-ray diffraction has shown the transition of Cu from high oxidation state to low upon heat treatment from low to high temperatures. The crystalline size was also found to increase with the temperature. A linear potential sweep from the open circuit potential of the carbon electrode to -1.4 V was conducted in KOH to estimate the amounts of CuO and Cu in the carbon, according the charge consumed in some identified reduction peaks. All the Cu can be oxidized to CuO at 0.2 V, and this has been employed to estimate the amount of total Cu and thus that of Cu2O. The composition of Cu species in carbon can be conveniently estimated using the technique developed. The present work has demonstrated that, because of the conductive property of carbon, electrochemical measurement becomes an important option for the estimation of the amount and state of effective metals present in carbon.
1. Suzuki M., Adsorption Engineering, Elsevier, Tokyo, (1990).
2. Gregg S.J., and Sing K.S.W., Adsorption, Surface and Porosity; Academic Press,
London, (1982).
3. Illán-Gómez M.J.; Garcia-Garcia C.; Salinas-Martinez de Lecea C.;
Linares-Solano, Energy Fuels (1996), 10, 1108,.
4. Kinoshita K., Carbon: Electrochemical and Physicochemical Properties, John
Wiley & Sons, New York, (1988).
5. Radovic L.R., Sudhakar C., Carbon as a Catalyst Support: Production,
Properties and Applications, Spain, University of Alicante, (1997).
6. Pasel J., Käβner P., Montanari B., Gazzano M., Vaccari A., Makowski W.,
Lojewski T., Dziembaj R., Papp H., Appl. Catal. B Environ. (1998), 18, 199.
7. Muñiz J., Marbán G., Fuertes A.B., Appl. Catal. B Environ. (1999), 23, 25.
8. Teng H., Hsu L.Y., Lai Y.C. Environ. Sci. Technol. (2001), 35, 2369.
9. Bansal R.C., Donnet J.B., Stoeckli H.F.. Active Carbon, Marcel Dekker, New
York, (1988).
10.Conway B.E., Electrochemical Supercapacitors, Kluwer/Plenum, New York,
(1999).
11.Boehm H.P., Diehl E., Heck W., Sappok R., Surface oxides of carbon, Angew
Chem Internat Edit (1964), 3, 669.
12.Barton S.S., Boulton G.L., Harrison B.H., Carbon (1972), 10, 391.
13.Noh J.S., Schwarz J.A., Carbon (1990), 28, 675.
14.Lizzio A.A., Radovic L.R., Ind. Eng. Chem. Res. (1991), 30, 1735.
15.Otake Y., Jenkins R.G.., Carbon (1993), 31, 109.
16.Barton S.S., Evans M.J.B., Halliop E., MacDonald J.A.F., Carbon (1997), 35,
1361.
17.Shin S., Jang J., Yoon S.H., Mochida I., Carbon (1997), 35, 1739.
18.Mul G., Neeft J.P.A., Kapteijn F., Moulijn J.A., Carbon (1998), 36, 1269.
19.Ishitani A., Carbon (1981), 19, 269.
20.Viswanathan H., Rooke M.A., Sherwood P.M.A., Surface Interface Analysis
(1997), 25, 409.
21.Lee W.H., Kim J.Y., Ko Y.K., Reucroft P.J., Zondlo J.W., Appl. Surface. Sci.
(1999), 141, 107.
22.Yoshida A., Tanahashi I., Nishino A., Carbon (1990), 28, 611.
23.McCreery R.L., Cline K.K., McDermott C.A., McDermott M.T., Colloid Surface
(1994), 93, 211.
24.Hsieh C.T., Teng H., Carbon (2002), 40, 667.
25.Nian Y.R., Teng H., J. Electroanal. Chem. (2003), 540, 119.
26.Bard A.J., Faulkner L.R., Electrochemical Methods Fundamental and Application,
John Wiley & Sons, Canada, 2nd ed., (2001).
27.Norio Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier,
(1998).
28.Hamann C.H., Hamnett A., Vielstich W., Electrochemistry, Wiley-Vch, New York,
(1998).
29.Mattson J.S., Mark Jr.H.B., Activated Carbon: Surface Chemistry and Adsorption
from Solution, Wiley-Vch, New York, (1998).
30.Plambeck James A., Electroanalytical Chemistry: Basic Principles and
Applications, John Wiley & Sons, Canada, (1982).
31.Conway B.E., Electrochemical Supercapacitors: Scientific Fundamentals and
Technological Applications, Kluwer Academic/Plenum, New York, (1999).
32.Hu C.C., Huang Y.H., J. Electrochem. Soc. (1999), 146, 2465.
33.Liu K.C.; Anderson M.A., J. Electrochem. Soc. (1996), 143, 124.
34.張石麟、吳南均、李源弘,材料分析,中國材料科學學會,(2001)
35.Duong D.Do., Adsorption Analysis: Equilibria and Kinetics, Imperial College
Press, London, (1998).
36.Figueiredo J.L., Pereira M.F.R., Freitas M.M.A., Órfão J.J.M, Carbon (1999),
37, 1379.
37.Rodríguez-Reinoso F., Molina-Sabio M., and González M.T., Carbon (1995), 33,
15.
38.Jankowska H., Neffe S., Światkowski A., Electrochim. Acta. (1981), 26, 1861.
39.Biniak S., Światkowski A., Pakula M., Chemistry and Physics of Carbon, New
York, Dekker, (2000), 27, 125.
40.Pakula M., Biniak S., Światkowski A., Neffe S., Carbon (2002), 40, 1873.
41.Barisci J.N., Wallace G.G., Baughman R.H., J. Electroanal. Chem. (2000), 488,
92.
42.Li X., Horita K., Carbon (2000), 38, 133.
43.Jannakoudakis A.D., Jannakoudakis P.D., Theodoridou E., Besenhard J.O., J.
Appl. Electrochem. (1990), 20, 619.
44.Tremblay G., Vastola F.J., Walker Jr.P.L., Carbon (1978), 16, 35.
45.Linares-Solano A., Salinas-Martínez de Lecea C, Cazorla-Amorós D., Joly J.P.,
Energy Fuels (1990), 4, 467.
46.Figueiredo J.L., Pereira M.F.R., Freitas M.M.A., Órfão J.J.M., Carbon (1999),
37, 1379.
47.Haydar S., Moreno-Castilla C., Ferro-García M.A., Carrasco-Marín F.,
Rivera-Utrilla J., Perrard A., Joly J.P., Carbon (2000), 38, 1297.
48.Nian Y.R., Teng H., J. Electrochem. Soc. (2002), 149, A1008.
49.Zhu Z.H., Radovic L.R., Lu G.Q., Carbon (2000), 38, 451.
50.Xijun Hu, Lecheng Lei, Hiu Ping Chu, Po Lock Yue, Carbon (1999), 37, 631.
51.Mul G.., Neeft J.P.A., Kapteun F., Moulun J.A., Carbon (1998), 36, 1269.
52.Walcarius A., Bessiere J., Electroanalysis (1997), 9, 70.
53.Härtinger S., Pettinger B., Doblhofer K., J. Electroanal. Chem. (1995), 397,
335.
54.Härtinger S., Doblhofer K., J. Electroanal. Chem. (1995), 380, 185.
55.Jović V.D., Jović B.M., J. Electroanal. Chem. (2003), 541, 13.
56.Bockris, Kita, in Surface Electrochemistry: a molecular level approach John
O’M. Bockris and Shahed U. M. Khan, Editor, Plenum, New York, (1993).
57.Trasatti, Sato, in Electrochemistry at Metal and Semiconductor Electrodes
Norio Sato, Editor, Elsevier Science, Betherlands, (1998).
58.Shigeyoshi Nakayama, Atsushi Kimura, Masahiro Shibata, Susumu Kuwabata, and
Toshiyuki Osakai, J. Electrochem. Soc. (2001), 148, B467.
59.Pourbaix M., Alt of Electrochemical Equilibria in Aqueous Solutions, 2nd
English ed., NACE, Houston, TX (1974), 387.
60.San José M.T., Espinosa A.M., Tascón M.L., Vázquez M. D. and Sánchez Batanero
P., Electrochim. Acta. (1991), 36, 1209.
61.Norihito Ikemiya, Toshikazu Kubo, Shigeta Hara, Surf. Sci. (1995), 323, 81.
62.Božidar Ogorevc, Xiaohua Cai, Irena Grabec, Anal. chim. acta. (1995), 305,
176.
63.Zerbino J.O., De Mele M.F.L., J. appl. electrochem. (1997), 27, 335.
64.Hsu L.Y., Teng H. Applied Catalysis B:Environmental (2003), 42, 69.
65.Gennero De Chialvo M.R., Marchiano S.L., Arvía A.J., J. appl. electrochem.
(1984), 14, 165.
66.Gennero De Chialvo M.R., Zerbino J.O., Marchiano S.L., J. appl. electrochem.
(1986), 16, 517.
67.Pyun C.H. and Park S.M., J. Electrochem. Soc. (1986), 133, 2024.
68.Maurice V., Strehblow H.H., Marcus P., Surf. Sci. (2000), 458, 185