簡易檢索 / 詳目顯示

研究生: 陳鴻毅
Chen, Hung-I
論文名稱: 影像伺服氣壓驅動微操作系統之研究
A Study on Visual Servo of Pneumatic Driven Micromanipulation System
指導教授: 施明璋
Shih, Ming-Chang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 80
中文關鍵詞: 氣壓微操作系統模糊控制視覺影像
外文關鍵詞: pneumatic, micromanipulation system, fuzzy control, visual image
相關次數: 點閱:56下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目標為建構一套影像伺服氣壓驅動微操作系統,此系統包含三個子系統及整合之控制介面。
    第一部分,設計及建立氣壓微操作系統,因為空氣之可壓縮性,氣壓缸與滑軌之間的摩擦力及死區等非線性特性,為高度性系統,因此量測與繪製非線性特性,並設計模糊控制器及死區補償,改善微操作系統之定位精度,定位誤差能控制於±40nm內。
    在第二部份,設計及建立氣壓力量控制系統,量測氣壓力量控制系統之特性如比例壓力控制閥,依照這些非線性特性,設計自調式模糊控制器結合死區補償,於改善氣壓力量控制系統之精度,力量誤差能控制於±1mN內。
    在第三部份,建立顯微鏡系統,使用1/2吋CCD (Charge coupled device)攝影機擷取顯微鏡之影像,透過所設計之影像處理,影像追蹤及影像辨識,視覺影像使用於定義目標之空間位置,因此能計算目標位置與目標物之間距離。
    最後,氣壓微操作系統,氣壓力量控制系統及顯微鏡系統整合於所設計之控制介面,使用Visual C++之MFC (Microsoft Foundation Classes),完成控制介面包含影影像辨識及控制程序。從實驗結果微操作程序操作成功地執行。

    The objective of this study is to establish a visual servo pneumatic of driven micromanipulation system. This system includes three subsystems and an integrating control interface.
    The first section, a pneumatic micromanipulation system is designed and established. Because of the nonlinear characteristics of the compressibility of air, friction between the cylinder and linear guideways and dead zone, this is a highly nonlinear system. Therefore, nonlinear characteristics are measured and plotted. A fuzzy controller with a dead zone compensator is designed to improve the positioning precision of the micromanipulation system. The position error can be controlled within ±40nm.
    In the second section, a pneumatic force control system is designed and established. The characteristics of the pneumatic force control system are measured as the proportional pressure control valve. In accordance with these nonlinear characteristics, a self tuning fuzzy controller with a dead zone compensator is designed to improve the precision of the pneumatic force control system. The force error can be controlled within ±1mN.
    In the third section, the microscope system is set up. The images from the microscope are captured with a 1/2 type CCD(Charge coupled device) camera. Through the designed image processing, image tracking and recognition, a visual image is used to define the position of the object. Thus, the distance between the target position and the object can be calculated.
    Finally, the pneumatic force control system, the microscope and the pneumatic micromanipulation system are integrated according to the designed control interface. MFC (Microsoft Foundation Classes) of Visual C++ is used to finish the control interface, which includes image recognition and control processing. From the experimental results, the micromanipulation process was successfully completed.

    目 錄 頁碼 誌 謝 III 目 錄 IV 表 目 錄 IX 圖 目 錄 X 符號說明 XIII 第一章 緒 論 1 1-1 微操作器之種類 1 1-2 研究動機 3 1-3伺服氣壓與操作器之文獻回顧 4 1-3-1氣壓於力量控制相關文獻 4 1-3-2氣壓於定位控制相關文獻 5 1-3-3 微操作器 6 1-4自動化微操作系統之種類 7 1-5 影像伺服微操作系統之文獻回顧 9 1-6 研究方法與本文架構 10 第二章 影像伺服氣壓驅動微操作系統之介紹 12 2-1 影像伺服氣壓驅動微操作器系統之架構 12 2-2 影像伺服氣壓驅動微操作系統之控制架構 13 2-3 氣壓微操作系統之架構 15 2-4 氣壓力量控制系統之架構 16 2-5 影像顯微觀察系統架構 17 2-5 影像伺服氣壓驅動微操作系統之整合架構 18 第三章 系統數學模型 20 3-1 氣壓定位系統之數學模式 20 3-1-1氣壓定位平台的運動方程式 20 3-1-2針對控制容積 21 3-1-2 流經孔口的空氣質量流率計算 23 3-1-3 伺服閥的數學模式 23 3-1-4 微操作系統之數學模式 24 3-2 氣壓力量控制系統之數學模式 26 3-2-1 運動方程式 26 3-2-2 針對控制容積 27 3-2-3 比例減壓閥的數學模式 28 3-3 影像顯微觀察系統之座標數學模式 28 3-4 討論 31 第四章 控制方法 32 4-1 氣壓微操作系統之控制器設計 32 4-1-1 切換控制 32 4-1-2 模糊控制 33 4-1-3 系統之訊號死區補償 36 4-2 氣壓力量系統之控制器設計 38 4-2-1 模糊控制 39 4-2-2系統之訊號死區補償 41 4-2-3 模糊控制器之自調機制 42 4-3 影像回授機制 45 4-4 結合影像改良之模糊控制器 46 4-5 討論 48 第五章 影像處理與影像辨識 49 5-1 影像之空間表示方式 49 5-2 影像處理 49 5-2-1 低通濾波器 51 5-2-2 Sobel濾波器 51 5-2-3 直方圖 (Histogram) 52 5-2-4 臨界閾值法 (Threshold) 52 5-3 影像辨識 53 5-4 討論 54 第六章 實驗結果 55 6-1 特性量測 55 6-1-1 伺服閥流量特性 55 6-1-2 微操作系統之摩擦力特性 56 6-1-3 微操作系統之死區特性 57 6-1-4 比例壓力控制閥特性曲線 58 6-1-5 比例壓力控制閥控制電壓與氣壓缸輸出力量之特性曲線 58 6-2 實驗測試 59 6-2-1 模擬與實驗結果 59 6-2-2 定位控制結果 60 6-2-3 力量控制 62 6-2-4 步階力量控制 62 6-3 顯微觀察介面及影像追蹤測試 63 6-3-1 影像處理測試 64 6-4 結合影像之定位 65 6-5 微操作測試 67 6-5-1 穿刺矽膠球程序 67 6-5-2 魚卵穿刺測試 68 6-5-3 魚卵穿刺之動態量測 69 6-5-4 保潔膜穿刺測試 70 6-5-5 保潔膜穿刺之動態量測 71 6-6 討論 73 第七章 結論與建議 74 7-1 結論與討論 74 7-2 本文之貢獻 75 7-3 未來展望與建議 76 參考文獻 77 表 目 錄 頁碼 表4-1 X軸之模糊規則表及Y軸之模糊規則表 36 表4-2 Z軸之模糊規則表 36 表4-3模糊規則表 41 表4-4 尺度因子調整之規則表 43 表6-1 魚卵穿刺之動態數據 70 圖 目 錄 頁碼 圖1-1 微操作器種類 3 圖1-2 影像結合操作系統之相關運用 7 圖1-3 NIKON 影像自動化微操作系統 8 圖1-4 準分子雷射微加工機 8 圖2-1 氣壓驅動影像微操作器系統(a)實體照片(b)架構圖 13 圖2-2 氣壓驅動影像微操作器系統之方塊 14 圖2-3 氣壓微操作系統架構圖 15 圖2-4 氣壓微操作系統方塊圖 16 圖2-5 氣壓力量控制系統(a)實體圖(b)系統架構圖 16 圖2-6 氣壓微操作系統方塊圖 17 圖2-7 影像顯微觀察系統(a)實體圖(b)系統架構圖 18 圖2-8 影像伺服氣壓驅動微操作系統之方塊圖 19 圖3-1氣壓微操作系統水平移動軸示意圖 21 圖3-2氣壓力量控制系統示意圖 26 圖3-3 顯微鏡觀察微操作示意圖 29 圖3-4座標數學模式示意圖 30 圖4-1 控制方塊圖 32 圖4-2 傳統模糊控制器之架構圖 34 圖4-3 模糊歸屬函數(a)X軸(b) Y軸(c)Z軸 35 圖4-4 死區補償示意圖 37 圖4-5 控制器方塊圖 38 圖4-7 死區補償示意圖 42 圖4-8 尺度更新因子 之歸屬函數 43 圖4-9 影像伺服氣壓驅動微操作系統之方塊圖 46 圖4-10 影像伺服氣壓驅動微操作系統之控制方塊圖 46 圖4-10 改良之模糊規屬函數 47 圖5-1 空間濾波之方式 50 圖5-2 低通濾波器運算遮罩 51 圖5-3 Sobel 運算遮罩 51 圖5-4 影像辨識示意圖 54 圖 6-1 伺服閥流量與電壓關係圖 55 圖6-2 摩擦力與微操作系統移動速度關係圖 56 圖6-3 系統移動速度與伺服閥控制電壓之關係 57 圖6-4 輸入電壓與比例減壓閥出力量關係 58 圖6-5 輸入電壓與氣壓缸輸出力量關係 59 圖6-6 模擬與實驗結果 60 圖6-7 X、Y、Z三軸多步階定位及誤差時間響應圖 61 圖6-8 X、Y、Z三軸多步階定位及誤差時間響應圖 61 圖6-9X、Y、Z三軸多步階定位及誤差時間響應 62 圖6-10 力量控制響應圖 (a)力量輸出響應(b)誤差 63 圖6-11 步階力量控制響應圖 63 圖6-12顯微觀察介面之影像追蹤測試照片 64 圖6-14 模糊控制器調整歸屬函數比較之定位響應圖 66 圖6-15 X、Y軸步階定位響應圖(a)位移響應(b)誤差響應 67 圖6-16 X、Y軸多步階定位響應圖 67 圖6-17 穿刺矽膠球程序照片 68 圖6-18 魚卵穿刺流程照片 69 圖6-19 魚卵穿刺響應(a)位移響應圖(b)力量響應圖 70 圖6-20 保潔膜穿刺流程照片 71 圖6-21 保潔膜穿刺響應(a)位移響應圖(b)力量響應圖 72 圖6-22 保潔膜穿刺響應(a)位移響應圖(b)力量響應圖 72

    1. Oil Hydraulic manipulator, http://www.lin.com.tw/menu/products/
    Scientific/Micromanioulator%20System/Micromanioulator%20
    System.asp
    2. Motorized manipulator, www.sutter.com
    3. Motorized manipulator, http://www.gmp.ch/pcs6000Motorized micro
    manipulator-p-257.htmlwww.exfo-lifesciences.com
    4. Piezo manipulator, ww.exfo-lifesciences.com
    5. Piezo manipulator, www.ASIimaging.com
    6. Ben-Dov D. and Salcudean S. E., "A Force-Controlled Pneumatic Actuator," IEEE Transactions on Robotics and Automation, vol. 11, pp. 906-911, 1995.
    7. Tsai M. H. and Shih M. C., "A Study of the Pneumatic Counterweight of Machine Tools Conventional and Active Pressure Control Method," International Journal of Japan Society Mechanical Engineering, Series C, vol. 49, pp. 890-896, 2006.
    8. Pandian S.R., Takemura F., Hayakawa Y. and Kawamura S., "Pressure Observer-Controller Design for Pneumatic Cylinder Actuators," IEEE/ASME Transactions on Mechatronics, vol. 7, pp. 490-499, 2002.
    9. Michael D. V., Ceyssens F., Reynaerts D. and Puers R., "Microsized Piston-Cylinder Pneumatic and Hydraulic Actuators Fabricated by Lithography," Journal of Microelectro Mechanical Systems, vol. 18, pp. 1100-1104, 2009.
    10. McDonell B. W. and Bobrow J. E., "Adaptive Tracking Control of an Air Powered Robot Actuator," Journal of Dynamic Systems Measurement and Control, vol. 115, pp. 427-433, 1993.
    11. Shih M. C. and Lu C. S., "Fuzzy-Sliding Mode Position Control of a Ball Screw Driven by Pneumatic Servomotor," Journal of Mechatronics, vol. 5, pp. 421-431, 1995.
    12. Araki K., DU Y., Yin Y. and Chen J., "The Force Control of a Spot Welding Machine with a Specially Designed Pneumatic Cylinder," in Proceedings of the Third JHPS International Symposium, Yokohama, Japan,, 1996, pp. 343-348.
    13. Richer E. and Hurmuzlu Y., "A High Performance Pneumatic Force Actuator System: Part I-Nonlinear Mathematical Model," Journal of Dynamic Systems Measurement and Control, vol. 122, pp. 416-425, 2000.
    14. Richer E. and Hurmuzlu Y., "A High Performance Pneumatic Force Actuator System: Part Ⅱ-Nonlinear Controller Design," Journal of Dynamic Systems Measurement and Control, vol. 122, pp. 426-434, 2000.
    15. Pandian S.R., Takemura F., Hayakawa Y. and Kawamura S., "Pressure Observer-Controller Design for Pneumatic Cylinder Actuators," IEEE/ASME Transactions on Mechatronics, vol. 7, pp. 490-499, 2002.
    16. Pai K. R. and Shih M. C., "Nanoaccuracy Position Control of A Pneumatic Cylinder Driven Table," International Journal of Japan Society Mechanical Engineering, Series C, vol. 46, pp. 1062-1068, 2003.
    17. Chiang M. H., Chen C. C. and Tsou T. N., "Large stroke and high precision pneumatic-piezoelectric hybrid positioning control using adaptive discrete variable structure control," Mechatronics, vol. 15, pp. 523-545, 2005.
    18. Hariharan R. and Menon K. A. P., "A Hydraulic Micromanipulator," IEEE Transactions on Biomedical Engineering, vol. 26, pp. 56-58, 1979.
    19. Kudoh K., Goto T., Sato K., Yamagata Y., Furutani K. and Higuchi T., "Development of Piezo Micromanipulator for cell Micromanipulation," Journal of Mammalian Ova Research, vol. 7, pp. 7-12, 1990.
    20. Sulzmann A. and Jacot J, "3D computer graphics based interface to real microscope world for μ-robot telemanipulation and position control," in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Vancouver, 1995, pp. 285-291.
    21. Kallio P., Lind M., Zhou Q. and Koivo H.N., "A 3 DOF Piezohydraulic Parallel Micromanipulator," in Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, 1998, pp. 1823-1828.
    22. Thielecke H., Impidjati, Zimmermann H. and Fuhr G. R., "Gentle cell handling with an ultra-slow instrument: creep-manipulation of cells," Microsystem Technologies vol. 11, pp. 1230-1241, 2005.
    23. Ouyang P. R., Zhang W. J., Madan M. and Zhao W., "Overview of the development of a visual based automated bio-micromanipulation system," Journal of Mechatronics, vol. 17, pp. 578-588, 2007.
    24. http://www.teo.com.tw/prodDetail_print.asp?id=283
    25. Kudoh K. I., Tabuch S., Higuchi T, Kakusho N. and Sato K., "Development of Automatic Micromanipulation System for Biological Cell Sorter," Journal of Mammalian Ova Research, vol. 16, pp. 167-172, 1998.
    26. Ohashi K., Hata N., Matsumura T., Yahagi N., Sakuma I. and T. Dohi, "A manipulator with flexible drilling unit for hematopoietic stem cell harvesting," the 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002.
    27. Zhou L., Qiu Z. G., Ishikawa T., Kawakami T. and Eda H., "Development of vision controlled bio-cell manipulation system," International Journal of Manufacturing Technology and Management, vol. 9, pp. 130-143, 2006.
    28. Chronis N. and Lee L. P., "Polymer mems-based microgripper for single cell manipulation," the 17th IEEE International Conference on Micro Electro Mechanical Systems, 2004.
    29. Huang Y. C., Chuang K. C. and Lin M. S., "Design of Innovative LED Micro Structure Inspection Apparatus by Piezo Servo System," Transactions of Aeronautics Astronautics and Aviation, Series A, vol. 38, pp. 191-198, 2006.
    30. Zhou L., Qiu Z. J, Ishikawa T., Kawakami T. and Eda H., "Development of vision controlled bio-cell manipulation system," International Journal of Manufacturing Technology and Management, vol. 9, pp. 130-143, 2002.
    31. Huang H., Sun D., Mills J. K., Li W. J and Cheng S.H., " Visual-Based Impedance Control of Out-of-Plane Cell Injection Systems," IEEE Transactions on Automation Science and Engineering, vol. 6, pp. 565-571, 2009.
    32. Zadeh L.A., "Fuzzy Sets," Information and Control, vol. 8, pp. 338-353, 1965.
    33. Zadeh L.A., "Outline of a New Approach to the Analysis complex systems and decision processes," IEEE Transactions on Systems, Man and Cybernetics, vol. 3, pp. 404-418, 1973.
    34. Lee C.C., "Fuzzy Logic in Control Systems: Fuzzy Logic Controller -PartI," IEEE Transactions on Systems, Man and Cybernetics, vol. 2, pp. 404-418, 1990.
    35. Lee C.C., "Fuzzy Logic in Control Systems: Fuzzy Logic Controller -PartII," IEEE Transactions on Systems, Man and Cybernetics, vol. 2, pp. 419-435, 1990.
    36. Lhee C. G., Park J. S., Ahn H. S. and Kim D. H., "Sliding Mode-Like Fuzzy Logic Control with Self-Tuning the Dead Zone Parameters," IEEE Transactions on Fuzzy Systems, vol. 9, pp. 343-348, 2001.
    37. Zhou Y. and Nelson B. J., "Calibration of a parametric model of an optical microscope," Society of Photo-Optical Instrumentation Engineers, vol. 38, pp. 1985-1995, 1999.
    38. Gonzalez R.C. and Woods R.E., Digital Image Processing 2/E: Addison-Wesley Publishing Company, 2002.

    下載圖示 校內:2018-07-29公開
    校外:2018-07-29公開
    QR CODE