簡易檢索 / 詳目顯示

研究生: 吳卓穎
Wu, Chuo-ying
論文名稱: 固態二氧化碳之清洗效益的研究
A study on the cleaning effect of carbon dioxide snows
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 58
中文關鍵詞: CO2雪花清洗噴嘴雪花顆粒大小
外文關鍵詞: nozzle, CO2 snow cleaning, snow particle size
相關次數: 點閱:127下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溫室效應造成的全球暖化問題越來越被受重視,其中以CO2排放量為暖化主要原因之一。為解決CO2排放量之問題,產業界針對此方向投入大量研究開發CO2 之新用途,以其降低生物傷害與環境衝擊,如:CO2洗淨技術。CO2洗淨技術已廣泛應用於工業及醫療用途上,舉凡精密電子電路元件、微機電元件、半導體元件、光電產品及無菌醫療器材等。
    本研究利用CO2流體藉由不同噴嘴型態(流道結構、材質、管長)改變流場之特性以比較其清洗效能,並觀察不同型態噴嘴所噴出之CO2雪花顆粒大小是否影響清洗效能。由實驗結果得知,多孔流道平板之噴嘴因噴嘴間距近,較單孔流道平板噴嘴易產生擾流現象,且多孔流道平板噴嘴其噴出之清洗面積大、噴出氣流強、雪花顆粒小且分佈密集,故能將清洗距離有效提升至45cm;採用熱傳導性差之單孔壓克力圓管噴嘴,會造成噴嘴周期性之堵塞現象,且其堵塞會形成顆粒較大固態CO2雪花;不銹鋼單孔圓管型噴嘴則無堵塞,其噴出之CO2固體顆粒較小且均勻,雖清洗品質穩定但清除能力較單孔壓克力圓管型噴嘴者差;觀察不同管長之單孔不銹鋼圓管型噴嘴之清洗效率,以管長較長之噴嘴其流場集中、清洗效果較為顯著。

    CO2 emission is one of the main reasons causing green house effect which impacts the global climate and requires special attention. In order to reduce the quantities of CO2 emission, industrial circles make much research on new applications of CO2 to reduce environment at impact and harmful effects. CO2 cleaning technology is one of them.
    This study uses different nozzle types (different channel structure、material and tube length) to make CO2 flows to compare the CO2 cleaning performance. The snow sizes from different nozzles and their effects on the cleaning performance are explored. The experimental results show that the multi-orifice flat plate type nozzle has short distance between nozzles and produces turbulence more easily than the single-orifice flat plate type nozzle. Thus, the jet has large cleaning area、higher speed、small snow size and tight distribution. The effective cleaning distance can be prolonged to 45cm. Using low conductivity single-orifice tube type nozzle of acrilan material leads to nozzle blockage periodically which enlarges CO2 snow particles. On the other hand, single-orifice tube type nozzle of stainless steel material has no blockage and smaller CO2 snow particles are generated more uniformly and result in less efficient cleaning. From the cleaning performance of nozzles of different tube length, the one with a longer tube perform better.

    摘要 I Abstract II 致謝 III 第一章 緒論 1 1-1 前言 1 1-2 CO2之清洗法 3 1-2-1 固態CO2乾冰清洗法 3 1-2-2 固態CO2雪花清洗法 3 1-2-3 液態CO2清洗法 4 1-2-4 超臨界CO2(Supercritical CO2)清洗法 4 1-3 研究動機 6 1-4 論文架構 7 第二章 文獻回顧 8 第三章 實驗內容與方法 16 3-1 實驗耗材 16 3-2 實驗設備 17 3-3 實驗方法 20 3-3-1 流場結構觀察 20 3-3-2 清洗效能比較 20 3-3-3 雪花顆粒大小之分析 21 第四章 結果與討論 22 4-1 不同噴嘴之流場觀察分析 22 4-1-1 噴嘴一(單孔平板噴嘴)之流場分析 22 4-1-2 噴嘴二(多孔平板噴嘴)之流場分析 22 4-1-3 噴嘴三(單孔壓克力圓管型噴嘴)之流場分析 23 4-1-4 噴嘴三與噴嘴四之流場分析比較 23 4-1-5 噴嘴四、噴嘴五與噴嘴六之流場分析比較 24 4-2 不同型態噴嘴之清除率分析 25 4-2-1 不同孔數平板噴嘴之清洗效能分析 25 4-2-2 不同材料之單孔圓管噴嘴清洗效能分析 26 4-2-3 相同材料不同管長度之清洗效能分析 27 第五章 結論與建議 28 5-1 結論 28 5-2 建議 29 參考文獻 30 表目錄 表 1單孔平板噴嘴實驗數據 34 表 2多孔平板噴嘴實驗數據 34 表 3單孔壓克力圓管噴嘴實驗數據 35 表 4不銹鋼圓管噴嘴(4㎝)實驗數據 35 表 5不銹鋼圓管噴嘴(2.9㎝)實驗數據 36 表 6不銹鋼圓管噴嘴(1.2㎝)實驗數據 36 圖目錄 圖 1 固態雪花清洗機制示意圖 37 圖 2 CO2之壓力溫度相圖[26] 37 圖 3 文獻[9]實驗架構示意圖 38 圖 4 噴嘴一(單孔平板噴嘴) 39 圖 5 噴嘴二(多孔平板噴嘴) 39 圖 6 單孔壓克力圓管噴嘴 40 圖 7 單孔不銹鋼圓型噴嘴(管長4㎝) 40 圖 8 噴嘴五(管長2.9㎝) 41 圖 9 噴嘴六(管長1.2㎝) 41 圖 10 高速攝影機之CCD元件 42 圖 11 高速攝影機組件 42 圖 12 高倍率顯微鏡 43 圖 13 電磁攪拌平台 43 圖 14 超音波震盪儀 44 圖 15 計時器開關 44 圖 16 氧化鋁清洗效能分析之軟體 45 圖 17 清洗效能實驗架構示意圖 45 圖 18 噴嘴一流場圖 46 圖 19 噴嘴一漸擴區前端產生白色不穩定流場現象 46 圖 20 噴嘴一末端之流場觀察,白色部份為噴嘴噴出CO2 46 圖 21 噴嘴二全部流場,圓圈處為噴出較大顆粒之CO2固體 47 圖 22 噴嘴二前端產生白色不穩定流場現象 47 圖 23 噴嘴二末端,圓圈處為噴出較大顆粒之CO2固體 47 圖 24 噴嘴三全部流場,圓圈處為CO2固體阻塞 48 圖 25 噴嘴三末端,CO2固體阻塞噴出之現象 48 圖 26 噴嘴三之流體聲波,波形具有周期現象 49 圖 27 噴嘴四之流體聲波,波形平順 49 圖 28 噴嘴四(管長4㎝)末端 50 圖 29 噴嘴五(管長2.9㎝)末端 50 圖 30 噴嘴六(管長1.2㎝)末端 50 圖 31 不同孔數平板型噴嘴清洗效能分析圖 51 圖 32 單孔平板噴嘴清除情形觀察(清除距離35㎝) 51 圖 33 多孔平板噴嘴清除情形觀察(清除距離35㎝) 51 圖 34 不同管材清洗效能分析圖 52 圖 35 壓克力圓管噴嘴清除情形觀察(清除距離50㎝) 52 圖 36 不銹鋼圓管噴嘴清除情形觀察(清除距離50㎝) 52 圖 37 不同管長清洗效能分析圖 53 圖 38 不銹鋼圓管噴嘴清除情形觀察(管長4㎝,清除距離35㎝) 53 圖 39 不銹鋼圓管噴嘴清除情形觀察(管長2.9㎝,清除距離35㎝) 54 圖 40 不銹鋼圓管噴嘴清除情形觀察(管長1.2㎝,清除距離35㎝) 54 圖 41 單孔平板噴嘴於不同清洗距離雪花分佈分析圖 55 圖 42 多孔平板噴嘴於不同清洗距離雪花分佈分析圖 55 圖 43 壓克力噴嘴於不同清洗距離雪花分佈分析圖 56 圖 44 不銹鋼噴嘴於不同清洗距離雪花分佈分析圖 56 圖 45 不同管長噴嘴清洗距離45㎝雪花分佈分析圖 57

    [1] 黃啟峰, ”二氧化碳與地球暖化,” 科學發展, 第413期, pp.6-12, 2007
    [2] “京都議定書”
    [3] 陳航、陳郁文, ”二氧化碳回收及再利用技術之研發現況與前瞻研究,” 能源季刊, 第36卷, 第1期, pp.36-48, 2006
    [4] 郭子禎, ”環保清洗新技術─ CO2的神奇應用,” 科學發展,第400期,pp.30-35, 2006
    [5] J.W. King and L. L. Williams, “Utilization of critical fluids in processing semiconductors and their related materials,” Current Opinion in Solid State and Materials Science, Vol.7, pp.413-424, 2003
    [6] G. Spur, E. Uhlmann, F. Elbing, “Dry-ice blasting for cleaning: process, optimization and application,” Wear, Vols.233-235, pp.402-411, 1999
    [7] M. Aresta, “Carbon Dioxide Recovery and Utilization,” Kluwer Academic Publishers, Dordrecht, 2003
    [8] J. L. Clark, M. Wigdor and E. Myrick, ”jet spray cleaning for optical system,” Proceeding SPIE, Vol.4774, pp.29-44, 2002
    [9] S. A. Hoenig, “Cleaning surfaces with dry ice,” Compressed Air Magazine, Vol. 7, pp.22-25, 1986
    [10] R. Sherman and W. Whitlock, “The removal of hydrocarbons and silicone grease stain from silicon wafers,” Journal of Vacuum Science & Technology B, Vol.8, pp.563-567, 1990
    [11] L. Layden and D. Wadlow, “High velocity carbon dioxide snow for cleaning vacuum system surface,” Journal of Vacuum Science & Technology, Vol.8, pp.3881-3883, 1990
    [12] L. C. McKenize, J. E. Thompson, R. Sullivan, and J. E. Hutchison, ”Green chemical processing in the teching laboratory: a convenient liquid CO2 extraction of natural products,” The Royal Society of Chemistry, Vol.6, pp.355-358, 2004
    [13] R. Sherman, J. Grob and W. Whitlock, “Dry surface cleaning using CO2 snow,” Journal of Vacuum Science & Technology, Vol.9, pp.1970-1977, 1991
    [14] M. M. Hills, “Carbon dioxide jet spray cleaning of molecular contaminants,” Journal of Vacuum Science & Technology, Vol.13, pp. 30-34, 1995
    [15] M. M. Hills, “Mechanism of surface charging during CO2 ¬¬jet spray cleaning,” Journal of Vacuum Science & Technology, Vol.13, 1995
    [16] R. Sherman, D. Hirt and R. Vane, “Surface cleaning with the carbon dioxide snow jet,” Journal of Vacuum Science & Technology, Vol.12, pp.1876-1881, 1994
    [17] B. Balick, W. D. Kimura and G. H. Kim, “Comparison of Laser and CO2 Snow for cleaning Large Astronomical Mirrors,” Publications of Astronomical Society of the Pacific, Vol.107, pp.888-895, 1995
    [18] M. Susukida, M. Kame, H. Takezoe and K. Ishikawa, ”Usefulness of substrate cleaning with Carbon Dioxide for organic Electric Devices,” Japanese Journal of Applied Physics, Vol. 46, pp.L910-L912, 2007
    [19] A. Dangwal, G. Müller, D. Reschke, K. Floettmann and X. Singer, “Effective removal of field-emitting sites from metallic surface by dry ice cleaning,” Journal of Applied Physics, Vol.102, 2007
    [20] S. C. Yang, K. S. Huang and Y. C. Lin, “Optimization of a pulsed carbon dioxide snow jet for cleaning CMOS image sensors by using the Taguchi method,” Sensors and Actuators, Vol.139, pp.265-271, 2007
    [21] S. C. Yang and Y. C. Lin, “Removal of SU-8 photoresist using buckling-driven delamination assisted with a carbon dioxide snow jet for microfluidics fabrication,” Journal of Micromechanics and Microenegineering, Vol.17, pp.2447-2453, 2007
    [22] R. Sherman, “Carbon dioxide snow cleaning,” Particulate Science and Technology, Vol.25, pp.37-57, 2007
    [23] S. Banerj and A. Campbell, ”Non-damaging CO2 aerosol cleaning in FELO IC manufacturing,” Solid State Phenomena, Vols.103-104, pp.199-202, 2005
    [24] K. Reinhardt, K. Makhamreh and G. Tannous, “High does implant stripping and residue removal with sequential plasma and vacuum aerosol processes,” Solid State Phenomena, Vol.134, pp.117-120, 2008
    [25] J.J. Naughton and P. Franklin, ”Automating metal lift-off mass MEMs production,” Ecs Transaction, Vol.11, pp.159-165, 2007
    [26] S. Banerj and A. Campbell, “Principles and mechanism of sub-micrometer particle removal by CO2 cryogenic technique,” Journal Adhesion Science Technology, Vol.19, pp.739-751, 2005

    [27] R. A. Osiecki, and T. J. Magee, ”Ultraviolet laser cleaning of mirrored surface,” Proceeding SPIE, Vol.1329, 1990
    [28] S. A. Hoenig, “Dry ice snow as a cleaning media for hybrids and integrated circuits,” Hybrids Circuit Technology, pp.34-37, 1990

    下載圖示 校內:2013-09-09公開
    校外:2018-09-09公開
    QR CODE