| 研究生: |
許至彥 Abdillah, Setiawan |
|---|---|
| 論文名稱: |
基於層狀釩鐵氧化物新型電催化劑應用於水氧化 Novel Electrocatalyst Based on Layered Vanadium-iron Oxides for Superior Water Oxidation |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 尖端材料國際碩士學位學程 International Curriculum for Advanced Materials Program |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 釩酸鐵 、析氧反應 、水分解 、電催化劑。 |
| 外文關鍵詞: | iron-vanadate, oxygen evolution reaction, water splitting, elecrocatalyst |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類面臨的最關鍵問題之一是尋找替代能源。其中一種解決方案是通過水的分解產生氫氣和氧氣,其中氧氣釋放反應(OER)過程十分緩慢,是水分解的瓶頸反應。為了提高氧氣釋放反應效率,則以尋求非貴金屬為基的催化劑為目標。因此,我們提出了一種新型的Fe5V15O39(OH)9•9H2O (FVO)催化劑。該實驗在90⁰C的條件下進行濕法混合。我們通過觀察粉末以及電極的X射線繞射結果分析CV過程中的相變情況,並且利用X射線光電子能譜測定樣品中鐵和釩的含量。通過掃面電子顯微鏡和穿透式電子顯微鏡分析獲得形貌以及結構信息。電化學特性通過樣品在濃度為1M 的KOH溶液中利用電化學阻抗譜,線性掃描伏安法和計時電流法測得。最好的結果表明,CV蝕刻並用FeCl3浸漬的FVO材料具有139mv的低過電位,在270mV的轉換效率為0.361,Tafel斜率為43.8mA/dec,電化學表面活性(ECSA)為2.99mF/cm2。
這種FVO材料由於其價格低廉,地球蘊含豐富,並且在OER方面具有良好的電性能,是十分具有前途的材料。
Searching for alternative energy is one of the most critical issues that humans are facing. A solution is to generate hydrogen and oxygen through water splitting, in which oxygen evolution reaction (OER) is the sluggish and therefore a bottle neck step. To enhance the OER, advanced catalysts, especially catalyst based non-noble metals, are being sought. Herein, we report a novel Fe5V15O39(OH)9.9H2O (FVO) catalyst. This experiment using wet-mixing method under 90⁰C. We conduct X-ray diffraction in powder and electrode to observe the phase evolution during the CV. X-ray photoelectron spectroscopy was used to the content of Fe and V. Morphology and structural information were obtained by using the scanning electron microscope and transmission electron analysis. Electrochemical properties can be obtained by electrochemical impedance spectroscopy, linear scan voltammetry, and chronoamperometry in 1M KOH. The best result shows that CV etched FVO dipping FeCl3 obtained low overpotential 139mV in 10mA/cm2, Turnover frequency in 270mV is 0.361, Tafel slope 43.8mA/dec and electrochemical surface activity (ECSA) 2.99mF/cm2. This FVO material is very promising material since the material is cheap, abundant, and possess good electrical properties for OER.
[1] J. A. Turner, "Sustainable Hydrogen Production," Science, vol. 305, no. 5686, pp. 972-974, 2004, doi: 10.1126/science.1103197.
[2] A. Le Goff et al., "From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake," (in eng), Science, vol. 326, no. 5958, pp. 1384-7, Dec 4 2009, doi: 10.1126/science.1179773.
[3] X. Zou and Y. Zhang, "Noble metal-free hydrogen evolution catalysts for water splitting," Chemical Society Reviews, 10.1039/C4CS00448E vol. 44, no. 15, pp. 5148-5180, 2015, doi: 10.1039/C4CS00448E.
[4] M. Fang, G. Dong, R. Wei, and J. C. Ho, "Hierarchical Nanostructures: Design for Sustainable Water Splitting," Advanced Energy Materials, vol. 7, no. 23, 2017, doi: 10.1002/aenm.201700559.
[5] P. Du and R. Eisenberg, "Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges," Energy & Environmental Science, 10.1039/C2EE03250C vol. 5, no. 3, pp. 6012-6021, 2012, doi: 10.1039/C2EE03250C.
[6] D. Shi, R. Wojcieszak, S. Paul, and E. Marceau, "Ni Promotion by Fe: What Benefits for Catalytic Hydrogenation?," Catalysts, vol. 9, no. 5, p. 451, 2019. [Online]. Available: https://www.mdpi.com/2073-4344/9/5/451.
[7] S. Harayama, M. Kok, and E. L. Neidle, "FUNCTIONAL AND EVOLUTIONARY RELATIONSHIPS AMONG DIVERSE OXYGENASES," Annual Review of Microbiology, vol. 46, no. 1, pp. 565-601, 1992, doi: 10.1146/annurev.mi.46.100192.003025.
[8] M. Görlin et al., "Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts," Journal of the American Chemical Society, vol. 138, no. 17, pp. 5603-5614, 2016/05/04 2016, doi: 10.1021/jacs.6b00332.
[9] K. Fan et al., "Hollow Iron-Vanadium Composite Spheres: A Highly Efficient Iron-Based Water Oxidation Electrocatalyst without the Need for Nickel or Cobalt," Angew Chem Int Ed Engl, vol. 56, no. 12, pp. 3289-3293, Mar 13 2017, doi: 10.1002/anie.201611863.
[10] W. Wang, Y. Zhang, X. Huang, and Y. Bi, "Engineering the surface atomic structure of FeVO4 nanocrystals for use as highly active and stable electrocatalysts for oxygen evolution," Journal of Materials Chemistry A, vol. 7, no. 18, pp. 10949-10953, 2019, doi: 10.1039/c9ta02922b.
[11] J. M. Gonçalves, T. A. Matias, K. C. F. Toledo, and K. Araki, "Chapter Six - Electrocatalytic materials design for oxygen evolution reaction," in Advances in Inorganic Chemistry, vol. 74, R. van Eldik and C. D. Hubbard Eds.: Academic Press, 2019, pp. 241-303.
[12] Y. Matsumoto and E. Sato, "Electrocatalytic properties of transition metal oxides for oxygen evolution reaction," Materials Chemistry and Physics, vol. 14, no. 5, pp. 397-426, 1986/05/01/ 1986, doi: https://doi.org/10.1016/0254-0584(86)90045-3.
[13] G. G. C. Arizaga, K. G. Satyanarayana, and F. Wypych, "Layered hydroxide salts: Synthesis, properties and potential applications," Solid State Ionics, vol. 178, no. 15, pp. 1143-1162, 2007/06/01/ 2007, doi: https://doi.org/10.1016/j.ssi.2007.04.016.
[14] V. D. Nithya, R. K. Selvan, C. Sanjeeviraja, D. M. Radheep, and S. Arumugam, "Synthesis and characterization of FeVO4 nanoparticles," Materials Research Bulletin, vol. 46, no. 10, pp. 1654-1658, 2011, doi: 10.1016/j.materresbull.2011.06.005.
[15] Q. Wei et al., "Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage," Nano Energy, vol. 47, pp. 294-300, 2018, doi: 10.1016/j.nanoen.2018.02.028.
[16] S. Maingot, "A New Iron V[sub 2]O[sub 5] Bronze as Electrode Material for Rechargeable Lithium Batteries," Journal of The Electrochemical Society, vol. 140, no. 11, 1993, doi: 10.1149/1.2221035.
[17] Z. Peng et al., "Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries," Chem Commun (Camb), vol. 54, no. 32, pp. 4041-4044, Apr 17 2018, doi: 10.1039/c8cc00987b.
[18] W. Wang et al., "A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte," Energy & Environmental Science, vol. 4, no. 10, 2011, doi: 10.1039/c0ee00765j.
[19] P. Li et al., "Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation," Advanced Energy Materials, vol. 8, no. 15, 2018, doi: 10.1002/aenm.201703341.
[20] S. Wolfsried. "Kazakhstanite." https://www.mineralatlas.eu/lexikon/index.php/MineralData?mineral=Kazakhstanite (accessed.
[21] H. Jiang et al., "Tracking Structural Self-Reconstruction and Identifying True Active Sites toward Cobalt Oxychloride Precatalyst of Oxygen Evolution Reaction," Advanced Materials, vol. 31, no. 8, 2019, doi: 10.1002/adma.201805127.
[22] F. Song et al., "An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction," ACS Central Science, vol. 5, no. 3, pp. 558-568, 2019, doi: 10.1021/acscentsci.9b00053.
校內:2023-01-07公開