| 研究生: |
吳宜欣 Wu, Yi-Hsin |
|---|---|
| 論文名稱: |
Neuropilin-1短片段適體篩選及應用 The screening and application of short aptamers against neuropilin-1 |
| 指導教授: |
陳玉玲
Chen, Yuh-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 神經纖毛蛋白-1 、適體 、血管新生 |
| 外文關鍵詞: | Neuropilin1, aptamer, angiogenesis |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
適體為單股的DNA或RNA可以透過形成二級結構或三級結構而與目標分子物進行結合,適體模擬了抗體的特性,但比起抗體有更強的專一性及親和性,在臨床上可以用於與致癌基因的結合而達到治療及檢測的用途。Neuropilin-1 (NRP1)是一個細胞膜上的蛋白質,可以促進癌症的形成,包括腫瘤的增生、腫瘤細胞的侵襲性、轉移性及血管新生。由於他細胞質內的結構較短,大多被認為扮演VEGFA165, SEMA3A及其他配體共受體的角色。在非小細胞肺癌患者中發現NRP1的高表現會與病人的低存活率及高腫瘤復發能力相關,在實驗室先前的研究中,已經有針對NRP1蛋白質篩選出專一性高的適體(AP5, AP15, 和 AP37),雖然這三條適體對於NRP1都有高親和性及專一性的結合,但合成70-80的核甘酸序列用於未來活體實驗上成本仍然是過高,因此我們希望能在這篇研究中優化及縮短與NRP1具有專一性的適體。我們認為縮短的NRP1專一性的適體透過與NRP1結合,可應用於癌症的診斷及治療。本研究我們透過AP5、AP15和AP37的序列製作了一個短適體的微陣列,透過與NRP1的結合,得到幾個與NRP1具有高親和性的短片段適體。第一,我們把有表現NRP1的細胞株與短片段適體進行親和性及專一性的能力分析,證實短片段適體確實會與NRP1有專一性的結合。第二,檢測短片段適體在各種生物功能上的影響,發現短片段的適體不具有細胞毒性,且Ap5-447短片段適體會透過減少絲狀偽足的形成而抑制肺癌細胞的遷移能力,也有抑制細胞侵襲的能力。第三,在3D結構預測中也發現Nrp1專一性適體會纏繞在Nrp1 domain上,透過影響Nrp1蛋白的結構或配體與Nrp1的結合而影響下游訊路徑。第四,Ap5-447適體在動物實驗中也會透過抑制血管新生能力而抑制小鼠腫瘤生長速率,另一方面,我們也在動物體中以同位素的方式去追蹤適體進入體內後的動向,Ap5-447在24小時後能夠專一的貼附在腫瘤微轉移的位置。這個研究表明了NRP1的短片段適體在未來可能會開發成為肺癌的有用的診斷工具及治療策略。
Neuropilin-1 (NRP1) can facilitate cancer progression, including tumor growth, invasion, metastasis and angiogenesis. Non-small cell lung cancer patients with aberrant upregulation of NRP1 have poor disease-free and overall survival rate. In this study, we selected the truncated NRP1-specific aptamers, we found Ap5-447 aptamer inhibited migratory by decreasing filopodia formation, decreasing invasive ability. Intratumoral injection of Ap5-447 aptamer induced a significant decrease in the growth of CL 1-5 xenograft tumors by inhibit angiogenesis. This study revealed that NRP1-specific aptamers might be developed useful diagnostic and therapeutic strategies to lung cancer in the future.
1. Chames, P., Van Regenmortel, M., Weiss, E. & Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. British Journal of Pharmacology 157, 220-233 (2009).
2. Liu, J.K.H. The history of monoclonal antibody development – Progress, remaining challenges and future innovations. Annals of Medicine and Surgery 3, 113-116 (2014).
3. Beckman, R.A., Weiner, L.M. & Davis, H.M. Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer 109, 170-179 (2007).
4. Ellington, A.D. & Szostak, J.W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355, 850-852 (1992).
5. Hermann, T. & Patel, D.J. Adaptive recognition by nucleic acid aptamers. Science (New York, N.Y.) 287, 820-825 (2000).
6. Ruckman, J. et al. 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. The Journal of biological chemistry 273, 20556-20567 (1998).
7. Kiire, C.A. et al. Intravitreal pegaptanib for the treatment of ischemic diabetic macular edema. Clinical ophthalmology (Auckland, N.Z.) 9, 2305-2311 (2015).
8. Yan, A.C. & Levy, M. Aptamers and aptamer targeted delivery. RNA biology 6, 316-320 (2009).
9. Bagalkot, V. et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano letters 7, 3065-3070 (2007).
10. Lerk, C.F., Lagas, M., Fell, J.T. & Nauta, P. Effect of hydrophilization of hydrophobic drugs on release rate from capsules. Journal of pharmaceutical sciences 67, 935-939 (1978).
11. McNamara, J.O. et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotech 24, 1005-1015 (2006).
12. Hanahan, D. & Weinberg, Robert A. Hallmarks of Cancer: The Next Generation. Cell 144, 646-674.
13. Ko, Y.C. et al. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. Journal of oral pathology & medicine 24, 450-453 (1995).
14. Boffetta, P. Human cancer from environmental pollutants: the epidemiological evidence. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 608, 157-162 (2006).
15. Blackhall, F., Ranson, M. & Thatcher, N. Where next for gefitinib in patients with lung cancer? The lancet oncology 7, 499-507 (2006).
16. Collins, L.G., Haines, C., Perkel, R. & Enck, R.E. Lung cancer: diagnosis and management. Am Fam Physician 75, 56-63 (2007).
17. Sasaki, T., Rodig, S.J., Chirieac, L.R. & Jänne, P.A. The biology and treatment of EML4-ALK non-small cell lung cancer. European journal of cancer 46, 1773-1780 (2010).
18. Paez, J.G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science (New York, N.Y.) 304, 1497-1500 (2004).
19. Massarelli, E. et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non–small-cell lung cancer. Clinical cancer research 13, 2890-2896 (2007).
20. Mitsudomi, T. Advances in target therapy for lung cancer. Japanese journal of clinical oncology 40, 101-106 (2010).
21. Lanahan, A. et al. The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Developmental cell 25, 156-168 (2013).
22. Wild, J.R., Staton, C.A., Chapple, K. & Corfe, B.M. Neuropilins: expression and roles in the epithelium. International journal of experimental pathology 93, 81-103 (2012).
23. Bao, P. et al. The role of vascular endothelial growth factor in wound healing. Journal of Surgical Research 153, 347-358 (2009).
24. Carmeliet, P., Ferreira, V., Breier, G. & Pollefeyt, S. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435 (1996).
25. Lee, S. et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691-703 (2007).
26. Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 69, 4-10 (2005).
27. Senger, D.R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science (New York, N.Y.) 219, 983-985 (1983).
28. Eliceiri, B.P. et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Molecular cell 4, 915-924 (1999).
29. Roth, L. et al. Neuropilin-1 mediates vascular permeability independently of vascular endothelial growth factor receptor-2 activation. Sci Signal 9, ra42- (2016).
30. Fantin, A. et al. VEGF165-induced vascular permeability requires NRP1 for ABL-mediated SRC family kinase activation. Journal of Experimental Medicine, jem. 20160311 (2017).
31. Jubb, A.M. et al. Neuropilin‐1 expression in cancer and development. The Journal of pathology 226, 50-60 (2012).
32. Ellis, L.M. The role of neuropilins in cancer. Molecular cancer therapeutics 5, 1099-1107 (2006).
33. Pan, Q. et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer cell 11, 53-67 (2007).
34. Hong, T.-M. et al. Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clinical Cancer Research 13, 4759-4768 (2007).
35. 蔡雅筑 in 社會醫學 1-52 (成功大學, 2014).
36. Xiang, D. et al. Superior performance of aptamer in tumor penetration over antibody: implication of aptamer-based theranostics in solid tumors. Theranostics 5, 1083 (2015).
37. Chu, Y.-W. et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. American journal of respiratory cell and molecular biology 17, 353-360 (1997).
38. Crampton, S.P., Davis, J. & Hughes, C.C. Isolation of human umbilical vein endothelial cells (HUVEC). Journal of visualized experiments: JoVE (2007).
39. Kumar, R.M. The widely used diagnostics “DNA microarray”-a review. Am. J. Infect. Dis 5, 214-225 (2009).
40. Hoheisel, J.D. Microarray technology: beyond transcript profiling and genotype analysis. Nature reviews genetics 7, 200-210 (2006).
41. Reymond, N., d'Agua, B.B. & Ridley, A.J. Crossing the endothelial barrier during metastasis. Nature Reviews Cancer 13, 858-870 (2013).
42. Fantin, A. et al. The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins. Development 138, 4185-4191 (2011).
43. Franz, C.M., Jones, G.E. & Ridley, A.J. Cell migration in development and disease. Developmental cell 2, 153-158 (2002).
44. Le Clainche, C. & Carlier, M.-F. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiological reviews 88, 489-513 (2008).
45. Hansel, D.E. et al. Expression of neuropilin-1 in high-grade dysplasia, invasive cancer, and metastases of the human gastrointestinal tract. The American journal of surgical pathology 28, 347-356 (2004).
46. Carter, C.L., Allen, C. & Henson, D.E. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 63, 181-187 (1989).
47. Simon, T., Gagliano, T. & Giamas, G. Direct effects of anti-angiogenic therapies on tumor cells: VEGF signaling. Trends in Molecular Medicine (2017).
48. Saharinen, P., Eklund, L., Pulkki, K., Bono, P. & Alitalo, K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends in molecular medicine 17, 347-362 (2011).
49. Kim, Y., Jung, K., Baek, D., Hong, S. & Kim, Y. Co-targeting of EGF receptor and neuropilin-1 overcomes cetuximab resistance in pancreatic ductal adenocarcinoma with integrin β1-driven Src-Akt bypass signaling. Oncogene (2016).
50. Shin, D.Y. et al. Anti-invasive activities of anthocyanins through modulation of tight junctions and suppression of matrix metalloproteinase activities in HCT-116 human colon carcinoma cells. Oncology reports 25, 567 (2011).
51. Edelbauer, M. et al. Effect of vascular endothelial growth factor and its receptor KDR on the transendothelial migration and local trafficking of human T cells in vitro and in vivo. Blood 116, 1980-1989 (2010).
52. Milpied, P. et al. IL-17–producing invariant NKT cells in lymphoid organs are recent thymic emigrants identified by neuropilin-1 expression. Blood 118, 2993-3002 (2011).
53. Shikhagaie, M.M. et al. Neuropilin-1 Is Expressed on Lymphoid Tissue Residing LTi-like Group 3 Innate Lymphoid Cells and Associated with Ectopic Lymphoid Aggregates. Cell Reports 18, 1761-1773 (2017).
54. Abouelkheir, M. et al. Mesenchymal stem cells versus their conditioned medium in the treatment of cisplatin-induced acute kidney injury: evaluation of efficacy and cellular side effects. International Journal of Clinical & Experimental Medicine 9 (2016).
55. Group, E.L.C.V.I.S. Effects of vinorelbine on quality of life and survival of elderly patients with advanced non-small-cell lung cancer. Journal of the National Cancer Institute 91, 66-72 (1999).