| 研究生: |
廖哲敬 Liao, Che-Ching |
|---|---|
| 論文名稱: |
鈣摻雜之鈦酸鋇陶瓷體電阻衰退行為與交流阻抗分析之關係 Relationship between Resistance Degradation and Impedance Spectroscopy of Ca-Doped Barium Titanate |
| 指導教授: |
黃啟原
Haung, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 鈦酸鋇 、富鈦 、晶體結構 、顯微結構 、電阻衰退 、阻抗分析 |
| 外文關鍵詞: | Barium Titanate, resistance degradation, impedance spectroscopy |
| 相關次數: | 點閱:134 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究經收集前人文獻後知,可藉由鈣摻雜到鈦酸鋇陶瓷體中,能夠改善
陶瓷體的電阻衰退行為。但 Ca2+ 會同時取代鈣鈦礦結構中的 A-site 以及 Bsite;當 Ca2+ 取代 B-site 時,會形成 acceptor 反而使陶瓷體的電阻衰退行為 惡化。為確保 Ca2+ 取代A-site,故額外添加 0.5 mol% 的 TiO2,以促使 Ca2+ 取代 B-site 進行等價取代,進而提升陶瓷體的可靠度。 實驗結果顯示,將 (Ba1-xCax)Ti1.005O3 (x= 0、0.04、0.08 及 0.12) 單一相粉末,以 Rietveld 方法模擬精算結構因子,可以發現,鈣的添加量上升會導致晶 格體積縮小,但正方性無顯著變化,此行為符合Ca2+ 取代 Ba2+ 之行為;且從 高速壽命測試實驗中證實了 Ca2+ 的確提升了陶瓷體的可靠度,也可藉此證明 在本實驗中 Ca2+ 的確是進入 A-site 而非 B-site 。為了模擬積層陶瓷電容器 之燒結條件,故於還原氣氛 (1% H2/N2) 下燒結,故本實驗亦額外添加了 0.5 mol% 的 MnCO3 改善陶瓷體半導化的情況;經燒結後可得到平均粒徑為 0.36 μm 之均勻微結構。從阻抗分析的結果顯示,當添加 Ca2+ 後使得陶瓷體的晶粒 和晶界的導電率下降,這是由於 Ca2+ 摻雜使還原焓上升,讓氧空缺濃度下降, 故使得電子濃度也跟著下降,進而提升陶瓷體的可靠度。而其導電活化能、空 乏層厚度、晶界能障高度則呈現變化不大的結果,這是由於添加了相同濃度的 MnCO3 作為 acceptor 所導致。故在相同製程下,若想分析導電率活化能、空 乏層厚度、晶界能障高度和陶瓷體電阻衰退行為之關係,必須添加不同濃度的 acceptor 方能解析。
The objective of this study was to find the relationship between resistance degradation and impedance spectroscopy. The A/B ratio of (Ba1-xCax)Ti1.005O3¬ (x= 0、0.04、0.08 and 0.12) was set for Ti-excess to prevent Ca doping onto the B-site. Powder of (Ba1-xCax)Ti1.005O3¬ was calcined at 1050°C which temperature can make the powder no second phase. To simulating the MLCC sintering condition, the BT and BCT ceramics should be sintered in reduction atmosphere to prevent the Ni electrode oxidation, and we also add the 0.5 mol% MnCO3 to prevent the ceramic samples semiconduction. The grain sizes approximately 0.35 μm which fits the MLCC condition. We use two RQ equivalent circuit model to fit the impedance spectroscopy data, and the results meet the Curie-Weiss behavior. According to the resistance degradation data, we can know that Ca-doped could improve the ceramic reliability. All Ca-doped BaTiO3 (BCT) samples have lower grain and grain boundary conductivity than that of pure BT and this is the reason why BCT have better reliability than pure BT, while the depletion layer and grain boundary barrier height are the same in the BT and BCT samples.
參考文獻
[1] H. Chazono and H. Kishi, "Dc-electrical degradation of the BT-based material for multilayer ceramic capacitor with Ni internal electrode: Impedance analysis and microstructure,", Japanese Journal of Applied Physics; Proceedings Paper vol. 40, no. 9B, pp. 5624-5629, Sep 2001.
[2] S. Lee, W. H. Woodford, and C. A. Randall, "Crystal and defect chemistry influences on band gap trends in alkaline earth perovskites,", Applied Physics Letters, Article vol. 92, no. 20, pp. 3-6, May 2008, Art. no. 201909.
[3] Y. Sakabe and H. Takagi, "Nonreducible mechanism of {(Ba1-xCax)O}(m)TiO2 (m > 1) ceramics,", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, Article vol. 41, no. 11A, pp. 6461-6465, Nov 2002.
[4] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd edition, John Wiley & Sons, New York, Chapter 18.1, (1979).
[5] L. C. Dufour, C. Monty, and G. P. Ervas, 'Surfaces and interfaces of ceramic materials', pp. 521-533, Kuwer Academic, Boston, (1989).
[6] H. M. Obryan and J. Thomson, "Temperature-depeendent phase boundary for BaTi4O9, Ba4Ti13O30, and Ba6Ti17O40,", Journal of the American Ceramic Society, vol. 68, no. 2, pp. C70-C72, 1985.
[7] F. Kulcsar, "A Microstructure study of barium titanate ceramics,", Journal of the American Ceramic Society, vol. 39, no. 1, pp. 13-17, 1955.
[8] V. Krasevec, M. Drofenik, and D. Kolar, "Topotaxy Between BaTiO3 and Ba6Ti17O40,", Journal of the American Ceramic Society, Note vol. 70, no. 8, pp. C193-C195, Aug 1987.
[9] S. Lee, C. A. Randall, amd Z. L. Liu, "Modified Phase Diagram for the Barium Oxide-Titamium Dioxide System for the Ferroelectric Barium Titanate," J. Am. Ceram. Soc., 90 [8], 2589-94 (2007).
[10] Y. H. Hu, M. P. Harmer, and D. M. Smyth, "Solubility of BaO in BaTiO3,", Journal of the American Ceramic Society, Article vol. 68, no. 7, pp. 372-376, 1985.
[11] J. S. Choi and H. G. Kim, "Ineluence of Stoichiometry and Impurity on the Sintering Behavior of Barium-Titanate Ceramics,", Journal of Materials Science, vol. 27, no. 5, pp. 1285-1290, Mar 1992.
[12] S. H. Yoon, J. H. Lee, D. Y. Kim, and N. M. Hwang, "Effect of the liquid-phase characteristic on the microstructures and dielectric properties of donor- (niobium) and acceptor- (magnesium) doped barium titanate,", Journal of the American Ceramic Society, vol. 86, no. 1, pp. 88-92, Jan 2003.
[13] R. Waser, T. Baiatu, and K. H. Hardtl, "Dc Electrical Degradation of Perovskite-Type Titanates. 1. CERAMICS,", Journal of the American Ceramic Society, Article vol. 73, no. 6, pp. 1645-1653, Jun 1990.
[14] D. F. K. Hennings, R. Janssen, and P. J. L. Reynen, "Control of Liquid-Phase-Enhanced Discontinuous Grain-Growth in Barium-Titanate,", Journal of the American Ceramic Society, Article vol. 70, no. 1, pp. 23-27, Jan 1987.
[15] R. K. Sharma, N. H. Chan, and D. M. Smyth, "Solubility of TiO2 in BaTiO3,", Journal of the American Ceramic Society, Article vol. 64, no. 8, pp. 448-451, 1981.
[16] Y. H. Han, J. B. Appleby, and D. M. Smyth, "Calcium as an acceptor impurity in BaTiO3,", Journal of the American Ceramic Society, Article vol. 70, no. 2, pp. 96-100, Feb 1987.
[17] S. Lee and C. A. Randall, "A modified Vegard's law for multisite occupancy of Ca in BaTiO3-CaTiO3 solid solutions,", Applied Physics Letters, vol. 92, no. 11, pp. 3, Mar 2008, Art. no. 111904.
[18] Y. Sakabe, N. Wada, T. Hiramatsu, and T. Tonogaki, "Dielectric properties of fine-grained BaTiO3 ceramics doped with CaO,", Japanese Journal of Applied Physics vol. 41, no. 11B, pp. 6922-6925, Nov 2002.
[19] I. Burn and G. H. Maher, "High-resistivity BaTiO3 ceramics sintered in CO-CO2 atmospheres,", Journal of Materials Science, vol. 10, no. 4, pp. 633-640, 1975.
[20] O. Saburi, "Properties of Semiconductive Barium Titanates,", Journal of the Physical Society of Japan, vol. 14, no. 9, pp. 1159-1174, 1959.
[21] Y. Tsur, A. Hitomi, I. Scrymgeour, and C. A. Randall, "Site occupancy of rare-earth cations in BaTiO3,", Japanese Journal of Applied Physics, vol. 40, no. 1, pp. 255-258, Jan 2001.
[22] S.B. Desu, and E.C. Subbarao, 'Mn-doped BaTiO3,', pp. 189–206 in
Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic
Ceramics. Edited by L. M. Levinson. American Ceramic Society, Columbus,
OH, 1981.
[23] J. E. Bauerle, "Study of solid electrolyte polarization by a complex admittance method,", Journal of Physics and Chemistry of Solids, vol. 30, no. 12, pp. 2657-2670&, 1969.
[24] D. C. Sinclair and A. R. West, "Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature-coefficient of resistance,", Journal of Applied Physics, vol. 66, no. 8, pp. 3850-3856, Oct 1989.
[25] E. Barsoukov and J. R. Macdonald, "Impedance spectroscopy, theory experiment and applications," John Wiley & Sons. Inc., (2005)
[26] R. Hagenbeck and R. Waser, "Simulation of electrical properties of grain boundaries in titanate ceramics,", Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics,; Proceedings Paper vol. 101, no. 9, pp. 1238-1241, Sep 1997.
[27] R. Hagenbeck and R. Waser, "Influence of temperature and interface charge on the grain-boundary conductivity in acceptor-doped SrTiO3 ceramics,", Journal of Applied Physics, vol. 83, no. 4, pp. 2083-2092, Feb 1998.
[28] S. Song and F. Placido, "The influence of phase probability distributions on impedance spectroscopy,", Journal of Statistical Mechanics-Theory and Experiment, pp. 14, Oct 2004, Art. no. P10018.
[29] X. Guo and J. Maier, "Grain boundary blocking effect in zirconia: A Schottky barrier analysis,", Journal of the Electrochemical Society, vol. 148, no. 3, pp. E121-E126, Mar 2001.
[30] V. Paunovic, V. V. Mitic, Z. Prijic, and L. Zivkovic, "Microstructure and dielectric properties of Dy/Mn doped BaTiO3 ceramics,", Ceramics International, vol. 40, no. 3, pp. 4277-4284, Apr 2014.
[31] N. Hirose and A. R. West, "Impedance spectroscopy of undoped BaTiO3 ceramics,", Journal of the American Ceramic Society, vol. 79, no. 6, pp. 1633-1641, Jun 1996.
[32] J. Fleig, S. Rodewald, and J. Maier, "Microcontact impedance measurements of individual highly resistive grain boundaries: General aspects and application to acceptor-doped SrTiO3,", Journal of Applied Physics, vol. 87, no. 5, pp. 2372-2381, Mar 2000.
[33] X. Guo, J. Fleig, and J. Maier, “Separation of electronic and ionic Contributions to the Grain Boundary Conductivity in Acceptor-Doped SrTiO3,” J. Electrochem. Soc., 148, [9], J50-3, (2001).
[34] M. Vollman and R. Waser, "Grain-boundary defect chemistry of acceptor-doped titanates - space-charge layer width,", Journal of the American Ceramic Society, vol. 77, no. 1, pp. 235-243, Jan 1994.
[35] Yu-Ju Kao, Che-Yi Su, Christian Pithan, Detlev F. Hennings, Chi-Yuen
Huang, and Rainer Waser, “Hydroxyl Defect Effect on Reoxidation of Sc-
doped (Ba,Ca)(Ti,Zr)O3 Fired in Reducing Atmospheres” J. Am. Ceram.
Soc., 1–7 (2016)
[36] Seok-Hyun Yoon, Clive A. Randall, and Kang-Heon Hur, “Effect of acceptor concentration on the bulk electrical conduction in acceptor (Mg)-doped BaTiO3” Journal of Applied Physics, 107, 103721, May 2010.