| 研究生: |
吳書寧 Wu, Shu-Ning |
|---|---|
| 論文名稱: |
探討火柴棒狀硫化銀-硫化鋅奈米粒子之尺寸對光催化水產氫反應之效率的影響 Morphology dependence on the photocatalysis in hydrogen evolution for silver sulfide-zinc sulfide matchstick-like heteronanostructure |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 硫化銀-硫化鋅奈米結構 、水產氫 、光催化 |
| 外文關鍵詞: | Ag2S-ZnS nanocomposite, water splitting, photocatalysis |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於全球暖化與能源短缺的問題,使用太陽能做為催化水產氫反應,以提供氫能來源,為開發再生能源之重點研究,硫化銀-硫化鋅奈米異質結構為一適合應用在光催化反應的材料,有許多文獻曾研究過不同形貌的硫化銀-硫化鋅奈米異質結構,唯火柴棒結構鮮有文獻探討,本篇研究以一鍋反應熱裂解法製備之硫化銀-硫化鋅奈米粒子,可藉著調整鋅前驅物的莫爾數比,達到改變粒子長度的作用。因為硫化銀-硫化鋅奈米異質結構具良好的電荷轉移能力,所以我們想應用在光催化水產氫反應上,並探討其因為銀/鋅比而造成的長度差異是否會影響其能帶結構的變化,並影響電荷轉移能力,進而造成不同的光催化效率。
Ag2S-ZnS nanocomposite is suitable for photocatalyse the Hydrogen Evolution Reation(HER),there are many previous studies discussing the Ag2S-ZnS nanocomposite with different morphologies,though there are few papers talking about the matchstick-like Ag2S-ZnS nanocomposite. The current study of the topic is to synthesize Ag2S-ZnS nanocomposite with one-pot thermo-deomposition method . And it’s possible for us to change the particle size by adjusting the molar ratio of zinc precursor.
Due to the superior charge transfer ability of the Ag2S-ZnS nanocomposite, we wanted to apply this material on the photocatalysis of HER. We also wanted to test if the differences of the length of the NPs would affect the band structure, the ability of charge transfer and interfere the HER efficiency.
1. Fajrina, N. and M. Tahir, A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. International Journal of Hydrogen Energy, 2019. 44(2): p. 540-577.
2. Zhang, X., et al., Novel porous Ag2S/ZnS composite nanospheres: Fabrication and enhanced visible-light photocatalytic activities. Journal of Alloys and Compounds, 2016. 655: p. 38-43.
3. Zhang, H., et al., Cation exchange synthesis of ZnS–Ag2S microspheric composites with enhanced photocatalytic activity. Applied Surface Science, 2013. 270: p. 133-138.
4. Yang, X., et al., Synthesis of Porous ZnS:Ag2S Nanosheets by Ion Exchange for Photocatalytic H2 Generation. ACS Applied Materials & Interfaces, 2014. 6(12): p. 9078-9084.
5. Zhu, G. and Z. Xu, Controllable Growth of Semiconductor Heterostructures Mediated by Bifunctional Ag2S Nanocrystals as Catalyst or Source-Host. Journal of the American Chemical Society, 2011. 133(1): p. 148-157.
6. Shen, S.L., et al., Matchstick-Shaped Ag2S-ZnS Heteronanostructures Preserving both UV/Blue and Near-Infrared Photoluminescence. Angewandte Chemie-International Edition, 2011. 50(31): p. 7115-7118.
7. Feng, H., et al., Highly uniform matchstick-like Ag2S–ZnS hetero-nanorods using dodecanethiol as a sulfur source. Materials Letters, 2014. 126: p. 67-70.
8. Ming-Dong, W., et al., Determination of Thickness and Optical Constants of ZnO Thin Films Prepared by Filtered Cathode Vacuum Arc Deposition. Chinese Physics Letters, 2008. 25(2): p. 743-746.
9. Kahn, A., Fermi level, work function and vacuum level. Materials Horizons, 2016. 3(1): p. 7-10.
10. Pu, Y.-C., et al., Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide (Cu2O-rGO) nanoheterostructures and their related visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 2017. 204: p. 21-32.
11. Biswas, S., S. Kar, and S. Chaudhuri, Synthesis and Characterization of Zinc Sulfide Nanostructures. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2006. 36(1): p. 33-36.
12. Han, Z., et al., Robust Photogeneration of H<sub>2</sub> in Water Using Semiconductor Nanocrystals and a Nickel Catalyst. Science, 2012. 338(6112): p. 1321-1324.
13. Young, A.G., D.P. Green, and A.J. McQuillan, IR Spectroscopic Studies of Adsorption of Dithiol-Containing Ligands on CdS Nanocrystal Films in Aqueous Solutions. Langmuir, 2007. 23(26): p. 12923-12931.
校內:2024-09-02公開