| 研究生: |
江建志 Chiang, Chien-Chih |
|---|---|
| 論文名稱: |
鈰活化石榴石系列螢光粉體結構與特性 The Structure and Luminescent Properties of Ce3+-activated Garnet Series Phosphors |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 共價性 、藍位移 、紅位移 、石榴石結構 、螢光粉 、白光發光二極體 |
| 外文關鍵詞: | covalency, phosphor, blue shift, garnet structure, red shift, WLED |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前用在白光發光二極體中,具有藍光激發而可發出黃色波段的螢光粉種類少且不易合成。本研究針對具石榴石結構材料對其結構與螢光性質深入探討,利用沉澱法製備釔鋁石榴石螢光粉體的前驅物,比較不同酸鹼值的沉澱環境下,所製備之前驅物之外觀與均勻性,在低溫得到純相YAG結構,並在不同溫度煆燒下,比較產物的發光效率。利用相同製程導入鋱鋁石榴石螢光粉體的合成,在1000℃下利用沈澱法合成純相的鋱鋁石榴石結構,利用三價不同離子半徑的稀土離子取代TAG晶格位置中的鋱離子,並藉由控制石榴石晶格中十二面體的平均離子半徑,將TAG:Ce螢光粉體的發光波段藍位移或紅位移,並在CIE色度座標圖上,將其座標與藍光色度座標相連獲得暖白至冷白的白色色光。滿足色溫可調的需求。另一方面藉由銦或鎵離子的少量添加,將TAG:Ce螢光粉體的吸收波段調整,搭配不同波長的藍光晶片混出所需的白光色溫。在釓鋁石榴石螢光粉體的合成中,由於釓鋁石榴石在結構上的特殊限制,為避免第二相pervoskite 結構生成,本研究利用小離子半徑的稀土金屬如Tb、Y、Lu、Er來取代Gd的十二面體位置或以In、Ga取代Al使GAG:Ce結構更穩定,利用Tb、Y、Lu與Ga、In取代GAG:Ce中的Gd與Al時,都使發光波長藍移。與TAG:Ce、YAG:Ce相較之下,GAG:Ce的低色溫適用於室內照明用之白光LED。隨著石榴石結構中佔據十二面體的平均陽離子半徑增加與平均陰電性下降,造成整體結構的共價性下降。Ce-O之間共價性高,電子運動距離大,發光強度隨之下降,且溫度增加時,整體晶體共價性低者下降幅度也增加。顯示石榴石系列的螢光粉體,螢光粉的發光性質對溫度的敏感性決定於整體結構的共價性。在較高的活化劑濃度,電子發生交叉緩解的機率增加使發光強度下降,此現象在高溫下更趨明顯。由組態座標發現,提高環境溫度,石榴石結構隨著整體陰電性的下降,Ce-O間共價性增加,非輻射傳遞的機率也隨之增加,造成發光效率下降,此時發射波長的偏移隨熱效應減小。
YAG:Ce phosphors were synthesized by different precipitating processes. Pure YAG:Ce powder can be obtained by using normal strike method as calcined at 850℃ for 1 hr. The property of YAG powder is affected by the cation homogeneity and the morphology of precursor powder. The product formed by normal strike precipitation method has the highest emission peak at 535 nm after excitation at 470 nm.
Ce3+-activated terbium aluminum garnet (Tb3Al5O12:Ce, TAG:Ce) powder as luminescent phosphor was synthesized by the co-precipitation method. The emission intensity of TAG:Ce has the near linear relationship with the calcinating temperature. TAG:Ce presents a broad band emission peak of Ce3+ at 552~562 nm as exciting at 470nm. The maximum concentration of Ce3+ used to replace Tb3+ is about 1 mol% for the highest emission intensity at 552 nm. The concentration quenching effect occurs when the Ce3+ concentration added is above 1 mol%. The color temperature of TAG:Ce is lower than that of YAG:Ce for warm white LED application. The behaviors of Y, Tb, and Gd garnet phosphor powders activated by cerium were studied. Emission spectra with continuous yellowish range from green-yellow to yellow-orange were produced by controlling the compositions of the solid solution.
An impure phase GdAlO3 usually remains in the product of GAG powder as synthesized. In this study, an attempt to prepare a stable GAG pure phase powder by substituting the dodecahedral sites of the garnet structure with the small cation ions of Tb3+, Y3+,Er3+ or Lu3+ was made. Pure garnet phase GAG powder was formed by calcining at 1500℃ for 2 h. It is found that increasing the Lu3+ content in the Gd3+ lattice of the dodecahedral site induces a slightly blue shift in the emission wavelength and increases the emission intensity of the phosphor. The color temperature of the pure GAG:Ce phosphor powder (~2900K) formed is lower than that of YAG:Ce and TAG:Ce phosphors.
Increasing the substitution concentration of large cations in the garnet phosphor, the emission intensity tends to decrease and the temperature sensitivity of phosphors tends to increase. The red shift of the emission wavelength depends on the electronegativity of the substituted cation at the dodecahedral site of the garnet structure. Using a quantum mechanically based configurational coordinate diagram, the thermal quenching behavior, emission spectra, Stokes shift, non-radiative transitions in different host environments and activator concentrations are discussed.
[1] 郭子菱、呂紹旭,“白光LED技術發展演進近況”,光連雙月刊,72期,p.34-37 (2007)。
[2] 林志勳,“白光LED新興市場機會與材料發展趨勢”,經濟部,工研院,第四章,p.9 (2005)。
[3] 劉如熹,劉宇恒著,“發光二極體用氮氧螢光粉介紹”,p.1-21~3-6,全華科技圖書出版,2006年11月。
[4] W. M. Yen, S. Shionoya and H. Yamamoto, Phosphor handbook, 2nd Ed.,CRC press, Boca Raton, 7 (2007).
[5] 徐敘瑢、蘇勉曾,“發光學與發光材料”,化學工業出版社,p.543-584 (2004)。
[6] G. Sole Jose, L. B. Lopez and J. G. Daniel, An introduction to the optical spectroscopy of inorganic solids, John Wiley & Sons, p.181-182, (2005).
[7] W. M. Yen, S. Shionoya and H. Yamamoto, Phosphor handbook, 2nd Ed.,CRC press, Boca Raton, p.168-172 (2007).
[8] 周公度,段連運著,結構化學基礎,淑馨出版社,p.221 (1997)。
[9] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids ,Clarendon Press, Oxford, p.68-77 (1989).
[10] C. K. Jorgensen, Absorption spectra and chemical bonding in complexes, Pergamon Press, Oxford, p.352 (1960).
[11] G. Sole Jose, L. B. Lopez and J. G. Daniel, An introduction to the optical spectroscopy of inorganic solids. John Wiley & Sons, p.188-190 (2005)
[12] G. Blasse, and B. C. Grabmaier, Luminescent materials, Springer Verlag, Berlin Heidelberg, p.13(1994).
[13] R. C. Ropp, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, p.245 (1991).
[14] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids, Clarendon Press, Oxford, p.200-201 (1989).
[15] G. Blasse, and B. C. Grabmaier, Luminescent materials, Springer Verlag, Berlin Heidelberg, p.15 (1994).
[16] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids, Clarendon Press, Oxford, p.208 (1989).
[17] R. C. Ropp, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, p.290-298 (1991)
[18] R. C. Ropp, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, p.292 (1991).
[19] K. H. Batler, and C. W. Jerome “Calciumhalophosphate phosphors:. analysis of emission spectra” Journal of Electrochemical Society, 97, p.265 (1950).
[20] 鄭子樵、李紅英主編,稀土功能材料 稀土功能材料,曉園出版社, p.173-174 (2006)。
[21] G. H. Dieke, In Spectra and energy levels of rare earth ions in crystal. Wiley Interscience, New York, p.142 (1968).
[22] A. S. Marfunin, Spectroscopy, Luminescence and radiation centers in minerals, Berlin Springer-Verlag, New York. P.149 (1979).
[23] S. J. Schneider, R. S. Roth, and J. L. Waring, “Solid state reactions involving oxides of trivalent cations,” J. Res. Nat. Bur. Stand., 65A, [4] p.364, (1961)
[24] K. Papagelis, J. Arvanitidis, G. Kanellis, G.A. Kourouklis and S. Ves, “Phonons in Rare-Earth Aluminum Garnets and Their Relation to Lattice Vibration of AlO4.”Phys . Status Solidi (b) 215, p.193 (1999)
[25] Q. Li, L. Gao, D. Yan, “The crystal structure and spectra of nano-scale YAG:Ce3+”, Materials Chemistry and Physics. 64, p.41, (2000)
[26] E. Zych, C. Brecher, “Temperature dependence of Ce-emission kinetics in YAG:Ce optical ceramic”, Journal of Alloys and Compounds. 300-301, p.495-499 (2000)
[27] I. Matsubara, M. Paranthaman, S. W. Allison, M. R. Cates, D. L. Beshears, D. E. Holcomb, “Preparation of Cr-doped Y3Al5O12 phosphors by heterogeneous precipitation methods and their luminescent properties”, Materials Research Bulletin, 35, p.217-224 (2000)
[28] Y. C. Kang, I. W. Lenggoro, S. B. Park, K. Okuyama, “YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis”, Materials Research Bulletin, 35 p.789-798 (2000)
[29] G. Menzer “Die Kristallstruktur der Granate”, Z. Kristallogr. 69, 300–96, (1928)
[30] J. M. Kittrick, L. E. Shea, C. F. Bacalski and E. J. Bosze, “The influence of processing parameters on luminescent oxides produced by combustion synthesis”, Displays, 19, p.169–172 (1999).
[31] S. W. Wang, and J. K. Guo, "Solid-State-Reaction Fabrication and Properties of High-Doping Nd: YAG Transparent Laser Ceramic," J. Chin. Ceram. Soc., 35 [12] p.1600–1604. (2007).
[32] M.S. Tsai, W. C. Fu, W. C. Wu, C. H. Chen and C. H. Yang, ”Effect of aluminum source on the formation of yttrium aluminum garnet (YAG) powder via solid state reaction”, Journal of alloy and compounds, 455, p.461–464 (2008)
[33] J. G. Li, T. Ikegami, J. H. Lee, T. Mori, “Characterization of yttrium aluminate garnet precursors synthesized via precipitation using bicarbonate as the precipitant”, Journal of Materials Research, 15, 11, p.2375-2386, (2000)
[34] K. Ohno, T. Abe, “Effect of BaF2 on the Synthesis of the Single-Phase Cubic Y3Al5O12:Tb”, Journal of Electrochemical Society.133, p.638, (1986)
[35] M. S. Tsai, W. C. Fu and G.M. Liu, “Effect of pre aging pH on the formation of yttrium aluminum garnet powder (YAG) via the solid state reaction method”, Journal of alloys and compounds 440, p.309-314 (2006)
[36] K. R. Han, H. J. Koo, C. S. Lim. “A Simple Way to Synthesize Yttrium Aluminum Garnet by Dissolving Yttria Powder in Alumina Sol”, Journal of the American Ceramic Society, 82, p.1598-1600 (1999)
[37] N. Matsushita, N. Tsuchiya and K. Nakatsuka, “Precipitation and calcination processes for yttrium aluminum garnet precursors synthesized by the urea method”, Journal of the American Ceramic Society. 82 (8), p.1977 (1999)
[38] P. Apte, H. Burke, H. Pickup, “Synthesis of yttrium aluminum garnet by reverse strike precipitation”, Journal of Materials Research, 7, 3, p.706-711 (1992)
[39] H. Wang, L. Gao, K. Niihara, “Synthesis of nanoscaled yttrium aluminum garnet powder by the Co-precipitation method”, Materials Science and Engineering A, 288, p.1-4 (2000)
[40] J. G. Li, T. Ikegami, J. H. Lee, T. Mori, Y. Yajima, “Co-precipitation Synthesis and Sintering of Yttrium Aluminum Garnet (YAG) Powders: The Effect of Precipitant”, Journal of the European Ceramic Society., 20, p.2395-2405 (2000)
[41] R. V. Kamat, K. T. Pillai, V. N. Vaidya and D. D. Sood, R. V. Kamat et al., “Synthesis of yttrium aluminum garnet by the gel entrapment technique using hexamine”, Materials Chemistry and Physics, 46, p.67 (1996)
[42] G. Gowda ”Synthesis of yttrium aluminates by the sol-gel process”, Journal of Materials Science Letters, 5, p.1029~1032 (1986)
[43] M. Nyman, J. Caruso, M. J.Hampden “Comparison of Solid-State and Spray- Pyrolysis Synthesis of Yttrium Aluminate Powders”, Journal of the American Ceramic Society, 80 (5), p.1231-1238 (1997)
[44] T. Takamori and L. D. David, “Controlled Nucleation for Hydrothermal Growth of Yttrium-Aluminum Garnet Powders”, Journal of the American Ceramic Bulletin. 65, p.1982 (1986)
[45] Y. C. Kang, I. W. Lenggoro, S. B. Park, K. Okuyama, “YAG:Ce phosphor particles prepared by ultrasonic spray Pyrolysis”, Materials Research Bulletin, 35, p.789-798 (2000)
[46] S. Shikao, W. Jiye, “Combustion synthesis of Eu activated Y3Al5O12 phosphor nanoparticles”, Journal of Alloys and Compounds, 327, p.82–86 (2001)
[47] J. J. Zhang, J. W. Ning, X. J. Liu, Y. B. Pan, and L. P. Huang, “A novel synthesis of phase-pure ultrafine YAG: Tb phosphor with different Tb concentration,” Materials Letters, 57, p.3077-3081 (2003).
[48] K. M. Kinsman, J. McKittrick, E. Sluzky, and K. Hesse, “Phase development and luminescence in chromium-doped yttrium aluminum garnet (YAG:Cr) phosphors”, Journal of the American Ceramic Society., 77 [11] p.2866–72 (1994).
[49] Y. H. Zhou, J. Lin, S. B. Wang, H.J. Zhang, “Preparation of YAG:Eu phosphor by citric gel method and their luminescent properties”, Optical materials 20, p.13-20 (2002)
[50] H. Yang, and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors”, Journal of Luminescence, 128, 10, p.1570-1576 (2008).
[51] S. Tsao, Y. P. Fu, C.T. Hu, “Preparation of Y3Al5O12:Sm powders by microwave-induced combustion process and their luminescent properties”, Journal of Alloys and Compounds, 419 (1-2) p.197-200 (2006)
[52] S. Zhou, Z. Fu, J. Zhang, and S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG: Re (Re= Ce3+, Pr3+, Tb3+)” , Journal of Luminescence, 118, p.179-185 (2006).
[53] D. J. Robbins, “The effects of crystal field and temperature on the photoluminescence excitation efficiency of Ce3+ in YAG”, Journal of Electrochemical Society: Solid-State Sci. Technol., 126 [9] p.1550-1555 (1979).
[54] Y. Pan, M. Wu, Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods” , Journal of Physics and Chemistry of Solids 65, p.845–850 (2004)
[55] H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs”, Journal of Luminescence, 126, p.371-377 (2007).
[56] T. Feng, J. L. Shi, D. Y. Jiang, “Preparation and optical properties of transparent Eu3+: Y3Al5(1-x)Sc5xO12 ceramics”, Journal of the American Ceramic Society, Vol.89, No.5, p.1590-1593, (2006)
[57] T. Y. Tien, E. F. Gibbons, R. G. DeLosh, P. J. Zacmanidis, D. E. Smith, and H. L. Stadler, “Ce3+ activated Y3Al5O12 and some of its solid solutions” , Journal of Electrochemical Society: Solid-State Sci. Technol., 120 [2] p.278-281 (1973).
[58] E. Antic-Fidancev, J. Holsa, M. Lastusaari, A. Lupei, “Dopant-host relationships in rare-earth oxides and garnets with rare-earth ions”, Physical Review B, 64, p.195108 (2001),
[59] G. Blasse and A. Bril, “A.Investigation of some Ce3+ activated phosphors”, Journal of Chemical Physics, 47(12) p.5139-5145,(1967)
[60] I. Warshaw and R. Roy, ”Stable and metastable equilibria in the systems Y2O3-Al2O3 and Gd2O3-Fe2O3” , Journal of the American Ceramic Society., 42 [9] p.434-438, (1959)
[61] J.G. Li, J.H. Lee, T. Ikegami, and T. Mori, “Low-Temperature Fabrication of Transparent Yttrium Aluminum Garnet (YAG) Ceramics without Additives” , Journal of the American Ceramic Society., 83 [4] p.961–63 (2000)
[62] John B. Gruber, B. Zandi, “Crystal-field splitting of some quintet states of Tb3+ in aluminum garnets”, PHYSICAL REVIEW B 69, p.115103 (2004)
[63] M. Geho, T. Sekijimi, T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine”, J. Crystal Growth, 267, p.188 (2004)
[64] K. Papagelis, G. Kanellis, J. Arvanitidis, G. A. Kourouklis, S. Ves, “Pressure evolution of the phonon modes and force constants of Tb3Al5O12 and Lu3Al5O12”, Physica B, 265, p.277 (1999)
[65] S. Ganschow, D. Klimm, B. M. Epelbaum, A.Yoshikawa, J. Doerschel, T. Fukuda, “Growth conditions and composition of terbium aluminum garnet single crystals grown by the micro pulling down technique”, Journal of Crystal Growth, 225, p.454 (2001)
[66] M.S. Tsai, G. M. Liu, S. L. Chung, “Fabrication of cerium active terbium aluminum garnet (TAG:Ce) phosphor powder via the solid-state reaction method”, Materials Research Bulletin, Volume 43, Issue 5, 6, p.1218-1222 (2008)
[67] S. Saxena, A. Asokkumar K and B. Lal, “Citrate - Nitrate route for the synthesis and characterization of TAG using sol-gel techniques”, Journal of Sol-Gel Science and Technology, Volume 41, Number 3, March, p.245-248 (2007)
[68] J. G. Li, T. Ikegami, J. H. Lee, and T. Mori “Well-sinterable Y3Al5O12 powder from carbonate precursor”, Journal of Materials Research, 15, (7), p.1514-1523 (2000)
[69] T. Meher, A.K. Basu, S.Ghatak, “Physicochemical characteristics of alumina gel in hydroxydrogel and normal form” Ceramics International, 31, p.831-838, (2005)
[70] S. J. Schneider, R.S. Roth, and J.L. Waring, “Solid state reaction involving oxides of trivalent cations”, Journal of Research of the National Bureau of Standards, 65A [4] p.364 (1961)
[71] R. D. Shannon & C. T. Prewitt, “Effective ionic radii in oxides and fluorides”, Acta Crystallographica Section B, 25, p.925-46, (1969)
[72] W. M. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook, , CRC Press, Boca Raton, second edition p.177 (2007)
[73] G. Blasse, “Energy Transfer in Oxidic Phosphors”, Philips Res. Rep. 24, p.131(1969)
[74] A. Nakatsuka, A. Yoshiasa, and T. Yamanaka, “Cation distribution and
crystal chemistry of Y3Al5-xGaxO12 (0≦x≦5) garnet solid
solutions,” Acta Crystallographica Section B, vol. B55, p.266–272, (1999)
[75] A. L. Allred, “Electronegativity values from thermochemical data”, Journal of Inorganic and Nuclear Chemistry, 17, p.215 (1961)
[76] J. J. Zhang, J. W. Ning, X. J. Liu, Y. B. Pan, L. P. Huang, “A novel synthesis of phase-pure ultrafine YAG: Tb phosphor with different concentration”, Materials Letters, 57(24-25) p.3077-3081(2003)
[77] F. Kummer, F. Zwaschka, A. Ellens, A. Debray, G. Waitl, “Luminous substance for alight source and light source associated therewith. International Patent Application” No.:WO01/08452, (2002)
[78] M. Batentschuk, A. Osvet, G. Schierning, A. Klier, J. Schneider, and A. Winnacker, “Simultaneous excitation of Ce3+ and Eu3+ ions in Tb3Al5O12” , Radiation Measurements, 38, p.539-543 (2004).
[79] M. Nazarov, D. Y. Noh, J. Sohn, and C. Yoon, “Quantum efficiency of double activated Tb3Al5O12:Ce3+, Eu3+” , Journal of Solid State Chemistry, 180, p.2493-2499 (2007).
[80] Y. D. Huh, Y. S. Cho, and Y. R. Do, “The optical properties of (Y1-xGdx)3-z(Al1-yGay)5O12:Cez phosphors for white LED” , Bulletin of the Korean Chemical Society, 23, [10], p.1435-1438 (2002).
[81] T. Manabe, and K. Egashira, “Crystal Growth and Optical Properties. of. Gadolinium Aluminum Garnet”, Materials Research Bulletin, 6, p.1167 (1971)
[82] F. Eular, and J. A. Bruce, “Oxygen Coordinates of Compounds with Garnet Structure”, Acta Crystallographica, 19, p.971 (1965).
[83] N. N. Matyushenko, E. P. Shevyakova, E.V. Lifshits and N. V. Lapina, “Crystal Structure and Properties of Gadolinium Aluminate GdAl11O18”, Russian Journal of Inorganic Chemistry, 30, (7), p.942 (1985).
[84] S. G. Tresvyatskii, “Periodicity in the series of rare earth elements and structure of the phase diagrams of the systems”, Izv. Akad. Nauk SSSR Neorg. Mater. 20, (3), p.440–445. (1984)
[85] O. Yamaguchi, K. Takeoka, K. Hirota, H. Takano, A. Hayashida, “Formation of alkoxy-derived yttrium aluminium oxides”, Journal of Materials Science, 27, p.1261 (1992).
[86] P. Wu, D. Pelton, “Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems”, Journal of Alloys and Compounds, 179, 1-2, 21, p.259-287 (1992)
[87] Y. Kanke, and A. Navrotsky, “A Calorimetric Study of the Lanthanide Aluminum Oxides. and the Lanthanide Gallium Oxides:. Stability of the Perovskites and the Garnets”, Journal of Solid State Chemistry, 141, p.424-436 (1998)
[88] F. Eular, and J. A. Bruce, “Oxygen Coordinates of Compounds with Garnet Structure”, Acta Crystallographica,, 19, p.971 (1965)
[89] A. A. Kaminskii, A. G. petrosyan, K. L. Ovanesyan, G. O. Shironyan, V. A. Fedorov, and S. E. Sarkisov, “Concentrational 3μm stimulated Emission Tuning in the (Gd1-xErx)3Al5O12 crystal system”, Physical Status Solidi A, 82, K185 (1984)
[90] B. Cockayne, D. B. Gasson, D. Findlay, D. W. Goodwin and R. A. Clay, “Growth and laser characteristics of yttrium-gadolinium aluminum garnet single crystals”, Journal of Physics and Chemistry of Solids, 29, p.905 (1968).
[91] H. Kimura, T. Numazawa, M. Sato, H. Maeda and M. Sakamoto, “Single crystal growth of (Dy1-xGd)3Al5O12 and (Dy1-x-yGdxYx)3Al5O12 garnets”, J. Crystal Growth, 97, p.607 (1989).
[92] C. Strohofer, A. Polman, ”Enhancement of Er3+ 4I13/2 population in Y2O3 by energy transfer to Ce3+”, Optical Materials, 17, p.445-451, (2001).
[93] W. W. Holloway and M. Kestigian, “Optical properties of cerium actived garnet crystals”, Journal of the Optical Society of America, 59, p.60 (1969)
[94] P. Dong, Y.Chen, J. Zou, “Effect of stress gradients in the surface layer of beryllium on X-ray stress measurement” Materials Characteristic, 49 p.381-386 (2003)
[95] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes” Applied Physics Letters, 86:243505-1-3 (2005)
[96] K. Ohno, T.Abe, “Effect of BaF2 on the synthesis of the single-phase cubic Y3Al5O12:Tb” . Journal of Electrochemical Society, 133, (3) p.638-643 (1986)
[97] J. Rowland, J. S. Yoo, K.-H. Kim, R. E. Hummel, P. Holloway, “The Stability of Y3Al5O12:Ce, ZnS:Cu,Al, Y2O2S:Eu, and (Sr0.98Ba0.02)2SiO4 :Eu under UV Irradiation”, Electrochemical and Solid-State Letters, 8, 4, p.H36-H38 (2005)
[98] A. Diaz and D.A. Keszler, “Red, green, and blue Eu2+ luminescence in solid-state borates: A structure- property relationship”, Materials Research Bulletin, 31, p.147(1996)