簡易檢索 / 詳目顯示

研究生: 江建志
Chiang, Chien-Chih
論文名稱: 鈰活化石榴石系列螢光粉體結構與特性
The Structure and Luminescent Properties of Ce3+-activated Garnet Series Phosphors
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 124
中文關鍵詞: 共價性藍位移紅位移石榴石結構螢光粉白光發光二極體
外文關鍵詞: covalency, phosphor, blue shift, garnet structure, red shift, WLED
相關次數: 點閱:69下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前用在白光發光二極體中,具有藍光激發而可發出黃色波段的螢光粉種類少且不易合成。本研究針對具石榴石結構材料對其結構與螢光性質深入探討,利用沉澱法製備釔鋁石榴石螢光粉體的前驅物,比較不同酸鹼值的沉澱環境下,所製備之前驅物之外觀與均勻性,在低溫得到純相YAG結構,並在不同溫度煆燒下,比較產物的發光效率。利用相同製程導入鋱鋁石榴石螢光粉體的合成,在1000℃下利用沈澱法合成純相的鋱鋁石榴石結構,利用三價不同離子半徑的稀土離子取代TAG晶格位置中的鋱離子,並藉由控制石榴石晶格中十二面體的平均離子半徑,將TAG:Ce螢光粉體的發光波段藍位移或紅位移,並在CIE色度座標圖上,將其座標與藍光色度座標相連獲得暖白至冷白的白色色光。滿足色溫可調的需求。另一方面藉由銦或鎵離子的少量添加,將TAG:Ce螢光粉體的吸收波段調整,搭配不同波長的藍光晶片混出所需的白光色溫。在釓鋁石榴石螢光粉體的合成中,由於釓鋁石榴石在結構上的特殊限制,為避免第二相pervoskite 結構生成,本研究利用小離子半徑的稀土金屬如Tb、Y、Lu、Er來取代Gd的十二面體位置或以In、Ga取代Al使GAG:Ce結構更穩定,利用Tb、Y、Lu與Ga、In取代GAG:Ce中的Gd與Al時,都使發光波長藍移。與TAG:Ce、YAG:Ce相較之下,GAG:Ce的低色溫適用於室內照明用之白光LED。隨著石榴石結構中佔據十二面體的平均陽離子半徑增加與平均陰電性下降,造成整體結構的共價性下降。Ce-O之間共價性高,電子運動距離大,發光強度隨之下降,且溫度增加時,整體晶體共價性低者下降幅度也增加。顯示石榴石系列的螢光粉體,螢光粉的發光性質對溫度的敏感性決定於整體結構的共價性。在較高的活化劑濃度,電子發生交叉緩解的機率增加使發光強度下降,此現象在高溫下更趨明顯。由組態座標發現,提高環境溫度,石榴石結構隨著整體陰電性的下降,Ce-O間共價性增加,非輻射傳遞的機率也隨之增加,造成發光效率下降,此時發射波長的偏移隨熱效應減小。

    YAG:Ce phosphors were synthesized by different precipitating processes. Pure YAG:Ce powder can be obtained by using normal strike method as calcined at 850℃ for 1 hr. The property of YAG powder is affected by the cation homogeneity and the morphology of precursor powder. The product formed by normal strike precipitation method has the highest emission peak at 535 nm after excitation at 470 nm.
    Ce3+-activated terbium aluminum garnet (Tb3Al5O12:Ce, TAG:Ce) powder as luminescent phosphor was synthesized by the co-precipitation method. The emission intensity of TAG:Ce has the near linear relationship with the calcinating temperature. TAG:Ce presents a broad band emission peak of Ce3+ at 552~562 nm as exciting at 470nm. The maximum concentration of Ce3+ used to replace Tb3+ is about 1 mol% for the highest emission intensity at 552 nm. The concentration quenching effect occurs when the Ce3+ concentration added is above 1 mol%. The color temperature of TAG:Ce is lower than that of YAG:Ce for warm white LED application. The behaviors of Y, Tb, and Gd garnet phosphor powders activated by cerium were studied. Emission spectra with continuous yellowish range from green-yellow to yellow-orange were produced by controlling the compositions of the solid solution.
    An impure phase GdAlO3 usually remains in the product of GAG powder as synthesized. In this study, an attempt to prepare a stable GAG pure phase powder by substituting the dodecahedral sites of the garnet structure with the small cation ions of Tb3+, Y3+,Er3+ or Lu3+ was made. Pure garnet phase GAG powder was formed by calcining at 1500℃ for 2 h. It is found that increasing the Lu3+ content in the Gd3+ lattice of the dodecahedral site induces a slightly blue shift in the emission wavelength and increases the emission intensity of the phosphor. The color temperature of the pure GAG:Ce phosphor powder (~2900K) formed is lower than that of YAG:Ce and TAG:Ce phosphors.
    Increasing the substitution concentration of large cations in the garnet phosphor, the emission intensity tends to decrease and the temperature sensitivity of phosphors tends to increase. The red shift of the emission wavelength depends on the electronegativity of the substituted cation at the dodecahedral site of the garnet structure. Using a quantum mechanically based configurational coordinate diagram, the thermal quenching behavior, emission spectra, Stokes shift, non-radiative transitions in different host environments and activator concentrations are discussed.

    摘要 Ⅰ Abstract III 總目錄 V 表目錄 X 圖目錄 XI 中英文名詞對照 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 5 第二章 理論基礎 6 2-1 螢光材料 6 2-2 螢光材料發光機制分類 6 2-3 光放射之激發源種類 7 2-4 螢光體發光理論與影響因素 9 2-4-1 發光過程 9 2-4-2 晶格場效應 11 2-4-3 電子雲膨脹效應 13 2-4-4 濃度淬滅效應 14 2-4-5 溫度淬滅效應 15 2-5 螢光體發光機制模型 15 2-5-1 組態座標模型 15 2-5-2 史托克位移 16 2-5-3 溫度影響波形寬化行為 18 2-6 螢光材料設計 19 2-6-1 主體材料晶格 19 2-6-2 活化劑 20 2-6-3 敏化劑 20 2-6-4 淬滅劑 20 2-7 稀土離子之發光特性 24 2-7-1 f-f軌域躍遷之稀土離子 24 2-7-2 f-d軌域躍遷之稀土離子 25 2-8 螢光體螢光特性光譜 27 2-8-1 吸收光譜 27 2-8-2 發光光譜及激發光譜 27 2-9 石榴石晶體結構及相關文獻回顧 29 2-10 石榴石晶體發光特性及相關文獻回顧 34 第三章 實驗方法與步驟 36 3-1 實驗藥品 36 3-2 石榴石結構中取代離子之離子半徑與陰電性 37 3-3 實驗步驟 38 3-4 分析方法與步驟 40 3-4-1 X-ray晶體繞射 40 3-4-2 熱差及熱重分析 40 3-4-3 傅立葉式轉換紅外線光譜儀 40 3-4-4 光致發光光譜 40 3-4-5 掃描式電子顯微鏡 41 3-4-6 CIE色度座標 41 第四章 實驗結果與討論 42 4-1 沉澱法合成YAG:Ce螢光粉體 42 4-1-1前驅物製備及EDX分析 43 4-1-2 沉澱所得產物之XRD分析 47 4-1-3 前驅物TEM分析 47 4-1-4 PL之分析 50 4-1-5 Gd離子取代YAG晶格 51 4-1-5-1 XRD 分析 51 4-1-5-2 PL分析 51 4-1-6 小結 54 4-2 鈰活化TAG螢光粉體 55 4-2-1 鈰活化TAG螢光粉體的製備 55 4-2-1-1 鈰活化TAG螢光粉體煆燒過程TG/DTA分析 55 4-2-1-2 鈰活化TAG螢光粉體煆燒過程FTIR分析 56 4-2-1-3 鈰活化TAG螢光粉體煆燒過程成相分析 56 4-2-1-4 鈰活化TAG螢光粉體SEM分析 61 4-2-1-5 鈰活化鋱鋁石榴石的激發光譜及發射光譜 61 4-2-2 稀土離子取代TAG晶格 64 4-2-2-1 稀土離子取代對TAG螢光粉體晶體結構之影響 64 4-2-2-2 稀土離子的取代對TAG發光光譜之影響 67 4-2-2-3 Ce含量對TAG的螢光性質影響 71 4-2-3 Ga與In離子取代TAG晶格 73 4-2-3-1 Ga與In離子的取代對TAG:Ce螢光粉體結構的影響 73 4-2-3-2 Ga與In離子的取代對TAG:Ce螢光性質的影響 76 4-2-4 小結 78 4-3 鈰活化釓鋁石榴石(GAG:Ce)螢光粉體合成研究 79 4-3-1-1 鈰活化GAG螢光粉體煆燒過程TG/DTA分析 80 4-3-1-2 鈰活化GAG螢光粉體煆燒結過程成相分析 80 4-3-1-3 鈰活化GAG螢光粉體煆燒後SEM分析 82 4-3-1-4 鈰活化GAG螢光粉體激發與發光光譜分析 86 4-3-2 稀土離子取代GAG晶格 88 4-3-2-1 稀土離子的取代對GAG螢光粉體晶體結構之影響 88 4-3-2-2 稀土離子的取代對GAG螢光粉體螢光性質之影響 89 4-3-3 Ga與In離子取代GAG晶格 92 4-3-3-1 Ga與In離子的取代對GAG螢光粉體晶體結構之影響 92 4-3-3-2 Ga與In離子的取代對GAG螢光粉體發光性質之影響 93 4-3-4 小結 96 4-4 YAG:Ce、TAG:Ce、GAG:Ce光學與結構上的比較 97 4-4-1 Ce在不同石榴石結構之光學特性影響 97 4-4-2 石榴石螢光粉體的熱效應 102 第五章 總結論 111 參考文獻 113 表目錄 Table1-1 Comparisons for different kinds of white LED. 4 Table 2-1 Applications and devices of phosphors. 8 Table 2-2 Cations that can be used to form phosphors. 21 Table 2-3 Anions that are optically self -active activatied. 21 Table 2-4 Anions that can be used to form phosphors. 22 Table 2-5 Cations that can be used as activator centers 23 Table 2-6 Cations that can be used as quenchers. 24 Table 4-1 Assignment of different IR analysis band in FTIR curve 59 Table 4-2 5d positions of excitation bands of Ce activated garnet phosphors 69 Table 4-3 Phases of the calcined product substituted at the desired concentration (10%, 20%, 30% of trivalent ions (Tb3+,Y3+,Lu3+ and Er3+) and temperature. "P" : GAP; "G" : GAG; The subscripts w and s describe the weak and strong peaks, respectively. 91 Table 4-4 5d positions of excitation bands of different Ga content in GAG:Ce phosphors 96 Table 4-5 The temperature dependence of chromaticity coordinates of garnet series phosphors on different activator concentrations. 110 Table 4-6 The characteristic and application of the garnet series phosphors. 110 圖目錄 Figure 1-1 Scheme of different kinds of method for white light generation. 3 Figure 2-1 Scheme of configuration coordinate diagram to explain (a) radiative (b) nonradiative de-excitation. 10 Figure 2-2 Scheme of d orbitals and ligand position. Open circle : ligands for octahedral symmetry. Filled circle : ligands for tetrahedral symmetry. 12 Figure 2-3 Scheme of energy level splitting of 3d1 electron in different symmetries. 12 Figure 2-4 Scheme of the split of d orbital for Nephelauxetic effect and crystal field effect. 14 Figure 2-5 Scheme of concentration quenching by two mechanisms (a) energy migration of excitation along a chain of donors and quencher (b) cross relaxation between pairs of centers. 16 Figure 2-6 Scheme of breathing model. 17 Figure 2-7 Schemes of the vibration wave functions for the lowest vibration level and a high vibration level. 18 Figure 2-8 The optical absorption and emission transition between the two parabolas which show the spectra broad band. 19 Figure 2-9 Scheme of self-activated anion of VO3-. 22 Figure 2-10 Ca5(FCl)(PO4)3:Mn2+(activator),Sb3+(sensitizer), where Mn2+ conc. are (A)0 (B)0.005 (C) 0.01 (D) 0.02 (E) 0.08 mol/mol Ca and the Sb3+ conc. is fixed at 0.01 mol/mol Ca. 23 Figure 2-11 Dieke diagram. 26 Figure 2-12 Scheme of presentation of experiment, energy levels, spectra of (a) absorption (b) emission (c) excitation 28 Figure 2-13 Phase diagram of Al2O3-Re2O3 system 31 Figure 2-14 Unit cell of garnet 32 Figure 3-1 Flowchart of experimental procedure. 39 Fig. 4-1-1 shows the pH with time change of different metal ion precipitated by NH4HCO3 using reverse strike titration method 45 Fig.4-1-2 The variation of the Al/Y ratio in the precursor changed with pH value using reverse strike titration method 45 Fig. 4-1-3 shows the pH with mole change of different metal ion precipitated by NH4HCO3 using normal strike titration method 46 Fig.4-1-4 The variation of the Al/Y ratio in the precursor changed with pH value using normal strike titration method 46 Fig.4-1-5 XRD spectra of YAG:Ce precursor calcined at different temperatures for reverse strike titration method ( G:YAG O:YAP) at (A) 800℃,(B)850℃,(C)900℃(D):1000℃) 48 Fig.4-1-6 XRD spectra of YAG:Ce precursor calcined at different temperatures for normal strike titration method at (A)800℃,(B)850℃,(C)900℃,(D)1000℃ ) 48 Fig.4-1-7 TEM images of YAG precursor obtained from reverse strike titration method (inset is precursor calcined at 900℃) 49 Fig.4-1-8 TEM images of YAG precursor obtained from normal strike titration method (inset is precursor calcined at 900℃) 49 Fig.4-1-9 shows the emission spectra of particles with different calcining temperature (a)900 (b)1100 (c)1300℃ dashed line : using normal strike titration method, solid line : using reverse strike titration method 50 Fig.4-1-10 The XRD spectra of the Y2.97-xGdxAl5O12:Ce0.03 phosphors synthesized with different value of (a) x=0.1 (b) x=0.2 (c) x=0.3 (d) x=0.4 (e) x=0.5 (f) x =0.6 (g) x=0.7 (h) x=0.8 (i) x=0.9 (j) x=1 52 Fig.4-1-11 The shift of emission wavelength of the Y2.97-xGdxAl5O12:Ce0.03 phosphors synthesized with different value from x=0.1 to 1 53 Fig.4-1-12 The color coordination (x, y) and color temperature for (Y1-xGdx)3Al5O12:Ce0.01 phosphors synthesized with different value from x=0.1 to 1 in CIE diagram 53 Fig.4-2-1 DTA/TG curves for the precursor of TAG:Ce0.03 phosphor 57 Fig.4-2-2. Transmission FTIR spectra of TAG precursor calcined at different temperature(a) untreated (b) 200℃ (c) 500℃ (d) 800℃ 58 Fig.4-2-3 XRD spectra of TAG:Ce (a) precursor and calcined at temperatures of (b)850℃,(c)900℃,(d) 950℃(e) 1000℃(f) 1100℃,(g) 1300℃ and (h) 1500℃ 60 Fig.4-2-4 SEM morphologies of the (a) precursor and calcined at temperatures of (b) 1100 (c) 1300 (d) 1500 ℃ 62 Fig.4-2-5 Excitation and emission spectra for TAG:Ce0.03 (Ex: 470nm, Em: 550nm) 63 Fig.4-2-6 The XRD spectra of (Tb1-xYx)3Al5O12:Ce phosphors with different concentrations of x (0<x≦1). 65 Fig.4-2-7 The XRD spectra of (Tb1-yGdy)3Al5O12:Ce phosphors with different concentrations of y, respectively (0<y≦1). 66 Fig.4-2-8 The emission wavelength and lattice parameter v.s. average ionic radii of the dodecahedral sites of garnet phosphors with different host ions (Y, Tb, Gd) and activator concentrations. 69 Fig.4-2-9 The color coordination (x, y) and color temperature for (T1-xYx)3Al5O12:Ce0.01 and (T1-yGdy)3Al5O12:Ce0.01 phosphors synthesized with different value from x and y = 0.1 to 1 in CIE diagram 70 Fig.4-2-10 The photoluminescence intensity and the maximum emission band at different concentration of Ce3+ under 460nm excited 72 Fig.4-2-11 The relative intensity drcreased with different concentrations of Ce3+ of different garnet series phosphors 72 Fig.4-2-12 The XRD spectra of Tb3(Al1-xGax)5O12:Ce phosphors with different concentrations of x (x=10, 20, 30%) 74 Fig.4-2-13 The XRD spectra of Tb3(Al1-xInx)5O12:Ce phosphors with different concentrations of x (a)10mol% (b)20mol% (c)30mol% (d)40mol% (e)50mol% 75 Fig.4-2-14 The PL spectra of Tb3(Al1-xGax)5O12:Ce phosphors with different concentrations of x (x=10, 20, 30%) 77 Fig.4-2-15 The PL spectra of Tb3(Al1-xInx)5O12:Ce phosphors with different concentrations of x (x=10, 20, 30%) 77 Fig. 4-2-16 5d positions of excitation bands of different Ga3+ content in TAG:Ce phosphors 78 Fig.4-3-1 DTA/TG curves for the precursor of GAG:Ce0.03 phosphor 81 Fig.4-3-2 Relative intensity of the X-ray diffraction peak of H-GAP (102), O-GAP (121) and GAG (420) as calcined at various temperatures. 83 Fig.4-3-3 XRD spectra of GAG:Ce (a) precursor and calcined at (b) 900 (c) 1000 (d) 1100 (e) 1200 (f) 1300 (g) 1400 (h) 1500 and (i) 1600 ℃. "H" : H-GAP , "P" : GAP , "G" : GAG 84 Fig.4-3-4 SEM morphologies of (a) precursor, and the products calcined at (b)900 (c)1100 (d)1300 (e)1400 (f)1500 (g)1600 ℃ 85 Fig.4-3-5 Excitation and emission spectra for GAG:Ce0.03 (Ex: 470nm, Em: 551nm) 87 Fig.4-3-6 XRD spectra of (Gd1-XRe’X)3Al5O12:Ce powder (Re =Er3+,Lu3+) calcined at 1500℃ for 2 h with different Re’3+ concentrations. "P" : GAP , "G" : GAG (a)Lu0.1(b) Lu0.2 (c) Lu0.3 (d) Er0.1 (e)Er0.2 (f) Er0.3 90 Fig.4-3-7 The maximum emission band of GAG:Ce powders at different substituted concentrations of Lu3+ (solid line) and Ga3+ (dashed line) excited at 470nm. 91 Fig.4-3-8 The XRD spectra of Ga3(Al1-xGax)5O12:Ce phosphors with different concentrations of x (a)10mol% (b)20mol% (c)30mol% (d)50mol% (e)75mol% 94 Fig.4-3-9 :XRD patterns of Gd3(Al1-xInx)5O12:Ce phosphors, (a) x=0.1 (b) x=0.2 (c) x=0.3 , (A)900 (B)1000 (C)1100 (D)1200 (E)1300(F)1400 (G)1500 ℃. 94 Fig.4-3-10 The PL spectra of Gd3(Al1-xGax)5O12:Ce phosphors with different concentrations of x (a)10mol% (b)20mol% (c)30mol% (d)50mol% (e)75mol% 95 Fig.4-3-11 The PL spectra of Gd3(Al1-xInx)5O12:Ce phosphors with different concentrations of x (x=10, 20, 30%) 95 Fig.4-3-12 The energy schematic diagram of the YAG, TAG, pure GAG phosphor and the energy transfer process in Ce3+. 98 Fig.4-3-13 High resolution TEM image of (a)YAG (b)TAG and (c) GAG grain stabled by 10% yttrium 99 Fig.4-3-14 Effect of normal stress gradients of YAG, TAG, and GAG stabled by 10% yttrium. (φ value : 0, 0.9087, 12.09, 15.89 ) 101 Fig.4-3-15 The color coordination (x, y) and color temperature for YAG : △, TAG : ● and pure GAG : ○ phosphor powders in CIE diagram. 101 Fig.4-4-1 The temperature dependence of PL intensity on different garnet series phosphors. 103 Fig.4-4-2 The temperature dependence of PL intensity of garnet series phosphors on different activator concentrations. 105 Fig.4-4-3 The configurational coordinate diagram of phosphor at room temperature showing the difference of the Stokes shift with Ce activated YAG, TAG and GAG phosphors, respectively. 106 Fig.4-4-4 The configurational coordinate diagram of phosphor at high temperature showing the energy difference of the Stokes shift and non-radiative transition with Ce activated YAG, TAG, and GAG phosphors. 108 Fig.4-4-5 The temperature dependence of wavelength shift and intensity on different garnet series phosphors.(a)YAG:Ce (b)TAG:Ce (c)GAG:Ce 109

    [1] 郭子菱、呂紹旭,“白光LED技術發展演進近況”,光連雙月刊,72期,p.34-37 (2007)。
    [2] 林志勳,“白光LED新興市場機會與材料發展趨勢”,經濟部,工研院,第四章,p.9 (2005)。
    [3] 劉如熹,劉宇恒著,“發光二極體用氮氧螢光粉介紹”,p.1-21~3-6,全華科技圖書出版,2006年11月。
    [4] W. M. Yen, S. Shionoya and H. Yamamoto, Phosphor handbook, 2nd Ed.,CRC press, Boca Raton, 7 (2007).
    [5] 徐敘瑢、蘇勉曾,“發光學與發光材料”,化學工業出版社,p.543-584 (2004)。
    [6] G. Sole Jose, L. B. Lopez and J. G. Daniel, An introduction to the optical spectroscopy of inorganic solids, John Wiley & Sons, p.181-182, (2005).
    [7] W. M. Yen, S. Shionoya and H. Yamamoto, Phosphor handbook, 2nd Ed.,CRC press, Boca Raton, p.168-172 (2007).
    [8] 周公度,段連運著,結構化學基礎,淑馨出版社,p.221 (1997)。
    [9] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids ,Clarendon Press, Oxford, p.68-77 (1989).
    [10] C. K. Jorgensen, Absorption spectra and chemical bonding in complexes, Pergamon Press, Oxford, p.352 (1960).
    [11] G. Sole Jose, L. B. Lopez and J. G. Daniel, An introduction to the optical spectroscopy of inorganic solids. John Wiley & Sons, p.188-190 (2005)
    [12] G. Blasse, and B. C. Grabmaier, Luminescent materials, Springer Verlag, Berlin Heidelberg, p.13(1994).
    [13] R. C. Ropp, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, p.245 (1991).
    [14] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids, Clarendon Press, Oxford, p.200-201 (1989).
    [15] G. Blasse, and B. C. Grabmaier, Luminescent materials, Springer Verlag, Berlin Heidelberg, p.15 (1994).
    [16] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids, Clarendon Press, Oxford, p.208 (1989).
    [17] R. C. Ropp, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, p.290-298 (1991)
    [18] R. C. Ropp, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, p.292 (1991).
    [19] K. H. Batler, and C. W. Jerome “Calciumhalophosphate phosphors:. analysis of emission spectra” Journal of Electrochemical Society, 97, p.265 (1950).
    [20] 鄭子樵、李紅英主編,稀土功能材料 稀土功能材料,曉園出版社, p.173-174 (2006)。
    [21] G. H. Dieke, In Spectra and energy levels of rare earth ions in crystal. Wiley Interscience, New York, p.142 (1968).
    [22] A. S. Marfunin, Spectroscopy, Luminescence and radiation centers in minerals, Berlin Springer-Verlag, New York. P.149 (1979).
    [23] S. J. Schneider, R. S. Roth, and J. L. Waring, “Solid state reactions involving oxides of trivalent cations,” J. Res. Nat. Bur. Stand., 65A, [4] p.364, (1961)
    [24] K. Papagelis, J. Arvanitidis, G. Kanellis, G.A. Kourouklis and S. Ves, “Phonons in Rare-Earth Aluminum Garnets and Their Relation to Lattice Vibration of AlO4.”Phys . Status Solidi (b) 215, p.193 (1999)
    [25] Q. Li, L. Gao, D. Yan, “The crystal structure and spectra of nano-scale YAG:Ce3+”, Materials Chemistry and Physics. 64, p.41, (2000)
    [26] E. Zych, C. Brecher, “Temperature dependence of Ce-emission kinetics in YAG:Ce optical ceramic”, Journal of Alloys and Compounds. 300-301, p.495-499 (2000)
    [27] I. Matsubara, M. Paranthaman, S. W. Allison, M. R. Cates, D. L. Beshears, D. E. Holcomb, “Preparation of Cr-doped Y3Al5O12 phosphors by heterogeneous precipitation methods and their luminescent properties”, Materials Research Bulletin, 35, p.217-224 (2000)
    [28] Y. C. Kang, I. W. Lenggoro, S. B. Park, K. Okuyama, “YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis”, Materials Research Bulletin, 35 p.789-798 (2000)
    [29] G. Menzer “Die Kristallstruktur der Granate”, Z. Kristallogr. 69, 300–96, (1928)
    [30] J. M. Kittrick, L. E. Shea, C. F. Bacalski and E. J. Bosze, “The influence of processing parameters on luminescent oxides produced by combustion synthesis”, Displays, 19, p.169–172 (1999).
    [31] S. W. Wang, and J. K. Guo, "Solid-State-Reaction Fabrication and Properties of High-Doping Nd: YAG Transparent Laser Ceramic," J. Chin. Ceram. Soc., 35 [12] p.1600–1604. (2007).
    [32] M.S. Tsai, W. C. Fu, W. C. Wu, C. H. Chen and C. H. Yang, ”Effect of aluminum source on the formation of yttrium aluminum garnet (YAG) powder via solid state reaction”, Journal of alloy and compounds, 455, p.461–464 (2008)
    [33] J. G. Li, T. Ikegami, J. H. Lee, T. Mori, “Characterization of yttrium aluminate garnet precursors synthesized via precipitation using bicarbonate as the precipitant”, Journal of Materials Research, 15, 11, p.2375-2386, (2000)
    [34] K. Ohno, T. Abe, “Effect of BaF2 on the Synthesis of the Single-Phase Cubic Y3Al5O12:Tb”, Journal of Electrochemical Society.133, p.638, (1986)
    [35] M. S. Tsai, W. C. Fu and G.M. Liu, “Effect of pre aging pH on the formation of yttrium aluminum garnet powder (YAG) via the solid state reaction method”, Journal of alloys and compounds 440, p.309-314 (2006)
    [36] K. R. Han, H. J. Koo, C. S. Lim. “A Simple Way to Synthesize Yttrium Aluminum Garnet by Dissolving Yttria Powder in Alumina Sol”, Journal of the American Ceramic Society, 82, p.1598-1600 (1999)
    [37] N. Matsushita, N. Tsuchiya and K. Nakatsuka, “Precipitation and calcination processes for yttrium aluminum garnet precursors synthesized by the urea method”, Journal of the American Ceramic Society. 82 (8), p.1977 (1999)
    [38] P. Apte, H. Burke, H. Pickup, “Synthesis of yttrium aluminum garnet by reverse strike precipitation”, Journal of Materials Research, 7, 3, p.706-711 (1992)
    [39] H. Wang, L. Gao, K. Niihara, “Synthesis of nanoscaled yttrium aluminum garnet powder by the Co-precipitation method”, Materials Science and Engineering A, 288, p.1-4 (2000)
    [40] J. G. Li, T. Ikegami, J. H. Lee, T. Mori, Y. Yajima, “Co-precipitation Synthesis and Sintering of Yttrium Aluminum Garnet (YAG) Powders: The Effect of Precipitant”, Journal of the European Ceramic Society., 20, p.2395-2405 (2000)
    [41] R. V. Kamat, K. T. Pillai, V. N. Vaidya and D. D. Sood, R. V. Kamat et al., “Synthesis of yttrium aluminum garnet by the gel entrapment technique using hexamine”, Materials Chemistry and Physics, 46, p.67 (1996)
    [42] G. Gowda ”Synthesis of yttrium aluminates by the sol-gel process”, Journal of Materials Science Letters, 5, p.1029~1032 (1986)
    [43] M. Nyman, J. Caruso, M. J.Hampden “Comparison of Solid-State and Spray- Pyrolysis Synthesis of Yttrium Aluminate Powders”, Journal of the American Ceramic Society, 80 (5), p.1231-1238 (1997)
    [44] T. Takamori and L. D. David, “Controlled Nucleation for Hydrothermal Growth of Yttrium-Aluminum Garnet Powders”, Journal of the American Ceramic Bulletin. 65, p.1982 (1986)
    [45] Y. C. Kang, I. W. Lenggoro, S. B. Park, K. Okuyama, “YAG:Ce phosphor particles prepared by ultrasonic spray Pyrolysis”, Materials Research Bulletin, 35, p.789-798 (2000)
    [46] S. Shikao, W. Jiye, “Combustion synthesis of Eu activated Y3Al5O12 phosphor nanoparticles”, Journal of Alloys and Compounds, 327, p.82–86 (2001)
    [47] J. J. Zhang, J. W. Ning, X. J. Liu, Y. B. Pan, and L. P. Huang, “A novel synthesis of phase-pure ultrafine YAG: Tb phosphor with different Tb concentration,” Materials Letters, 57, p.3077-3081 (2003).
    [48] K. M. Kinsman, J. McKittrick, E. Sluzky, and K. Hesse, “Phase development and luminescence in chromium-doped yttrium aluminum garnet (YAG:Cr) phosphors”, Journal of the American Ceramic Society., 77 [11] p.2866–72 (1994).
    [49] Y. H. Zhou, J. Lin, S. B. Wang, H.J. Zhang, “Preparation of YAG:Eu phosphor by citric gel method and their luminescent properties”, Optical materials 20, p.13-20 (2002)
    [50] H. Yang, and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors”, Journal of Luminescence, 128, 10, p.1570-1576 (2008).
    [51] S. Tsao, Y. P. Fu, C.T. Hu, “Preparation of Y3Al5O12:Sm powders by microwave-induced combustion process and their luminescent properties”, Journal of Alloys and Compounds, 419 (1-2) p.197-200 (2006)
    [52] S. Zhou, Z. Fu, J. Zhang, and S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG: Re (Re= Ce3+, Pr3+, Tb3+)” , Journal of Luminescence, 118, p.179-185 (2006).
    [53] D. J. Robbins, “The effects of crystal field and temperature on the photoluminescence excitation efficiency of Ce3+ in YAG”, Journal of Electrochemical Society: Solid-State Sci. Technol., 126 [9] p.1550-1555 (1979).
    [54] Y. Pan, M. Wu, Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods” , Journal of Physics and Chemistry of Solids 65, p.845–850 (2004)
    [55] H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs”, Journal of Luminescence, 126, p.371-377 (2007).
    [56] T. Feng, J. L. Shi, D. Y. Jiang, “Preparation and optical properties of transparent Eu3+: Y3Al5(1-x)Sc5xO12 ceramics”, Journal of the American Ceramic Society, Vol.89, No.5, p.1590-1593, (2006)
    [57] T. Y. Tien, E. F. Gibbons, R. G. DeLosh, P. J. Zacmanidis, D. E. Smith, and H. L. Stadler, “Ce3+ activated Y3Al5O12 and some of its solid solutions” , Journal of Electrochemical Society: Solid-State Sci. Technol., 120 [2] p.278-281 (1973).
    [58] E. Antic-Fidancev, J. Holsa, M. Lastusaari, A. Lupei, “Dopant-host relationships in rare-earth oxides and garnets with rare-earth ions”, Physical Review B, 64, p.195108 (2001),
    [59] G. Blasse and A. Bril, “A.Investigation of some Ce3+ activated phosphors”, Journal of Chemical Physics, 47(12) p.5139-5145,(1967)
    [60] I. Warshaw and R. Roy, ”Stable and metastable equilibria in the systems Y2O3-Al2O3 and Gd2O3-Fe2O3” , Journal of the American Ceramic Society., 42 [9] p.434-438, (1959)
    [61] J.G. Li, J.H. Lee, T. Ikegami, and T. Mori, “Low-Temperature Fabrication of Transparent Yttrium Aluminum Garnet (YAG) Ceramics without Additives” , Journal of the American Ceramic Society., 83 [4] p.961–63 (2000)
    [62] John B. Gruber, B. Zandi, “Crystal-field splitting of some quintet states of Tb3+ in aluminum garnets”, PHYSICAL REVIEW B 69, p.115103 (2004)
    [63] M. Geho, T. Sekijimi, T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine”, J. Crystal Growth, 267, p.188 (2004)
    [64] K. Papagelis, G. Kanellis, J. Arvanitidis, G. A. Kourouklis, S. Ves, “Pressure evolution of the phonon modes and force constants of Tb3Al5O12 and Lu3Al5O12”, Physica B, 265, p.277 (1999)
    [65] S. Ganschow, D. Klimm, B. M. Epelbaum, A.Yoshikawa, J. Doerschel, T. Fukuda, “Growth conditions and composition of terbium aluminum garnet single crystals grown by the micro pulling down technique”, Journal of Crystal Growth, 225, p.454 (2001)
    [66] M.S. Tsai, G. M. Liu, S. L. Chung, “Fabrication of cerium active terbium aluminum garnet (TAG:Ce) phosphor powder via the solid-state reaction method”, Materials Research Bulletin, Volume 43, Issue 5, 6, p.1218-1222 (2008)
    [67] S. Saxena, A. Asokkumar K and B. Lal, “Citrate - Nitrate route for the synthesis and characterization of TAG using sol-gel techniques”, Journal of Sol-Gel Science and Technology, Volume 41, Number 3, March, p.245-248 (2007)
    [68] J. G. Li, T. Ikegami, J. H. Lee, and T. Mori “Well-sinterable Y3Al5O12 powder from carbonate precursor”, Journal of Materials Research, 15, (7), p.1514-1523 (2000)
    [69] T. Meher, A.K. Basu, S.Ghatak, “Physicochemical characteristics of alumina gel in hydroxydrogel and normal form” Ceramics International, 31, p.831-838, (2005)
    [70] S. J. Schneider, R.S. Roth, and J.L. Waring, “Solid state reaction involving oxides of trivalent cations”, Journal of Research of the National Bureau of Standards, 65A [4] p.364 (1961)
    [71] R. D. Shannon & C. T. Prewitt, “Effective ionic radii in oxides and fluorides”, Acta Crystallographica Section B, 25, p.925-46, (1969)
    [72] W. M. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook, , CRC Press, Boca Raton, second edition p.177 (2007)
    [73] G. Blasse, “Energy Transfer in Oxidic Phosphors”, Philips Res. Rep. 24, p.131(1969)
    [74] A. Nakatsuka, A. Yoshiasa, and T. Yamanaka, “Cation distribution and
    crystal chemistry of Y3Al5-xGaxO12 (0≦x≦5) garnet solid
    solutions,” Acta Crystallographica Section B, vol. B55, p.266–272, (1999)
    [75] A. L. Allred, “Electronegativity values from thermochemical data”, Journal of Inorganic and Nuclear Chemistry, 17, p.215 (1961)
    [76] J. J. Zhang, J. W. Ning, X. J. Liu, Y. B. Pan, L. P. Huang, “A novel synthesis of phase-pure ultrafine YAG: Tb phosphor with different concentration”, Materials Letters, 57(24-25) p.3077-3081(2003)
    [77] F. Kummer, F. Zwaschka, A. Ellens, A. Debray, G. Waitl, “Luminous substance for alight source and light source associated therewith. International Patent Application” No.:WO01/08452, (2002)
    [78] M. Batentschuk, A. Osvet, G. Schierning, A. Klier, J. Schneider, and A. Winnacker, “Simultaneous excitation of Ce3+ and Eu3+ ions in Tb3Al5O12” , Radiation Measurements, 38, p.539-543 (2004).
    [79] M. Nazarov, D. Y. Noh, J. Sohn, and C. Yoon, “Quantum efficiency of double activated Tb3Al5O12:Ce3+, Eu3+” , Journal of Solid State Chemistry, 180, p.2493-2499 (2007).
    [80] Y. D. Huh, Y. S. Cho, and Y. R. Do, “The optical properties of (Y1-xGdx)3-z(Al1-yGay)5O12:Cez phosphors for white LED” , Bulletin of the Korean Chemical Society, 23, [10], p.1435-1438 (2002).
    [81] T. Manabe, and K. Egashira, “Crystal Growth and Optical Properties. of. Gadolinium Aluminum Garnet”, Materials Research Bulletin, 6, p.1167 (1971)
    [82] F. Eular, and J. A. Bruce, “Oxygen Coordinates of Compounds with Garnet Structure”, Acta Crystallographica, 19, p.971 (1965).
    [83] N. N. Matyushenko, E. P. Shevyakova, E.V. Lifshits and N. V. Lapina, “Crystal Structure and Properties of Gadolinium Aluminate GdAl11O18”, Russian Journal of Inorganic Chemistry, 30, (7), p.942 (1985).
    [84] S. G. Tresvyatskii, “Periodicity in the series of rare earth elements and structure of the phase diagrams of the systems”, Izv. Akad. Nauk SSSR Neorg. Mater. 20, (3), p.440–445. (1984)
    [85] O. Yamaguchi, K. Takeoka, K. Hirota, H. Takano, A. Hayashida, “Formation of alkoxy-derived yttrium aluminium oxides”, Journal of Materials Science, 27, p.1261 (1992).
    [86] P. Wu, D. Pelton, “Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems”, Journal of Alloys and Compounds, 179, 1-2, 21, p.259-287 (1992)
    [87] Y. Kanke, and A. Navrotsky, “A Calorimetric Study of the Lanthanide Aluminum Oxides. and the Lanthanide Gallium Oxides:. Stability of the Perovskites and the Garnets”, Journal of Solid State Chemistry, 141, p.424-436 (1998)
    [88] F. Eular, and J. A. Bruce, “Oxygen Coordinates of Compounds with Garnet Structure”, Acta Crystallographica,, 19, p.971 (1965)
    [89] A. A. Kaminskii, A. G. petrosyan, K. L. Ovanesyan, G. O. Shironyan, V. A. Fedorov, and S. E. Sarkisov, “Concentrational 3μm stimulated Emission Tuning in the (Gd1-xErx)3Al5O12 crystal system”, Physical Status Solidi A, 82, K185 (1984)
    [90] B. Cockayne, D. B. Gasson, D. Findlay, D. W. Goodwin and R. A. Clay, “Growth and laser characteristics of yttrium-gadolinium aluminum garnet single crystals”, Journal of Physics and Chemistry of Solids, 29, p.905 (1968).
    [91] H. Kimura, T. Numazawa, M. Sato, H. Maeda and M. Sakamoto, “Single crystal growth of (Dy1-xGd)3Al5O12 and (Dy1-x-yGdxYx)3Al5O12 garnets”, J. Crystal Growth, 97, p.607 (1989).
    [92] C. Strohofer, A. Polman, ”Enhancement of Er3+ 4I13/2 population in Y2O3 by energy transfer to Ce3+”, Optical Materials, 17, p.445-451, (2001).
    [93] W. W. Holloway and M. Kestigian, “Optical properties of cerium actived garnet crystals”, Journal of the Optical Society of America, 59, p.60 (1969)
    [94] P. Dong, Y.Chen, J. Zou, “Effect of stress gradients in the surface layer of beryllium on X-ray stress measurement” Materials Characteristic, 49 p.381-386 (2003)
    [95] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes” Applied Physics Letters, 86:243505-1-3 (2005)
    [96] K. Ohno, T.Abe, “Effect of BaF2 on the synthesis of the single-phase cubic Y3Al5O12:Tb” . Journal of Electrochemical Society, 133, (3) p.638-643 (1986)
    [97] J. Rowland, J. S. Yoo, K.-H. Kim, R. E. Hummel, P. Holloway, “The Stability of Y3Al5O12:Ce, ZnS:Cu,Al, Y2O2S:Eu, and (Sr0.98Ba0.02)2SiO4 :Eu under UV Irradiation”, Electrochemical and Solid-State Letters, 8, 4, p.H36-H38 (2005)
    [98] A. Diaz and D.A. Keszler, “Red, green, and blue Eu2+ luminescence in solid-state borates: A structure- property relationship”, Materials Research Bulletin, 31, p.147(1996)

    下載圖示 校內:2012-02-10公開
    校外:2012-02-10公開
    QR CODE