| 研究生: |
張智超 Chang, Chih-Chao |
|---|---|
| 論文名稱: |
混合拉氏轉換法求解傅立葉和非傅立葉熱傳導問題 Analysis of Fourier and Non-Fourier Heat Transfer Problems By Using Hybrid Laplace Transform Method |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 有限差分法 、混合拉氏轉換法 、非傅立葉相變化問題 |
| 外文關鍵詞: | Finite difference method, hybrid Laplace transformation method, non-Fourier phase-change problem |
| 相關次數: | 點閱:64 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討混合拉氏轉換法求解傅立葉和非傅立葉熱傳導問題以及傅立葉和非傅立葉相變化問題。在求解傅立葉熱傳導問題時,本文使用混合拉氏轉換法和有限差分法求解,並與解析解作比較。由計算結果可知,混合拉氏轉換法之累加誤差相對有限差分法明顯較小,其準確性相對較佳。在非傅立葉熱傳導問題方面,本文主要討論熱波模式(CV wave model),並使用拉氏轉換法搭配線性形狀函數、有限差分法、控制體積法等三種方法求解不同座標(直角、圓柱、球座標)下之各種熱傳問題,並探討這些問題之物理現象。其中,控制體積法相對於線性形狀函數和有限差分法,可最有效克服數值不穩定現象,其準確性相對最佳。對於非傅立葉相變化熱傳問題,本文主要探討非傅立葉史蒂芬問題,在非傅立葉相變化問題的相關研究方面,目前尚未有學者使用混合拉氏轉換法搭配單區法求解非傅立葉相變化問題,本文則使用拉氏轉換法以及有限差分法搭配求取潛熱的數種單區法求解相變化問題,可成功克服非傅立葉相變化問題會產生震盪現象,並預測其物理趨勢。
The main focus of this thesis is to use the hybrid Laplace transformation method to investigate the Fourier and non-Fourier linear and nonlinear (or phase-change) heat transfer problems. In studying Fourier heat transfer problems, the hybrid Laplace transformation and finite difference methods are utilized and the numerical solutions are compared with the exact ones. From the results, the accumulated errors of the Laplace transformation are significantly smaller than those of the finite difference method. In analyzing non-Fourier problems, the CV wave model is applied and the Laplace transformation combined with linear shape function, finite difference method and control volume scheme is used to solve the heat transfer problems of different coordinate systems (Cartesian, cylindrical and spherical coordinate systems). From the analysis, the control volume scheme could conquer the numerically unstable problem most effectively and would have the most accurate solutions. In investigating the non-Fourier phase-change problem, the non-Fourier Stefan problem is studied primarily. The hybrid Laplace transformation method combined with the finite difference method and the effective specific and enthalpy scheme is employed to solve the problem. From the computing results, it can be found that the proposed method could overcome the oscillating phenomenon presented in other methods.
1. Ceylan, H. T., “Long-Time Solutions to Heat Conduction Transient with Time-Dependent Inputs,” Thesis, Mechanical Engineering Department, University of Wisconsin-Madison, WS., 1979.
2. Mikhailov, M. D., and Ozisik, M. N., “General Solution of One-Dimensional, Time Dependent Coupled Heat Flow Systems,” Int. COMM. Heat Mass Transfer, vol. 12, pp. 393-404, 1985.
3. Rizzo, F. J., and Shippy, D. J., “A method of solution for certain problems of transient heat conduction,” AIAA J, vol. 8, pp. 2004-2009, 1970.
4. Holzlohner, U., “A finite element analysis for time-dependent problems,” Int. J. Numer. Meth. Engng, Vol. 8, pp. 55-69, 1974.
5. Aral, M. M., and Gulcat, U., “A finite element Laplace transform solution technique for the wave equation,” Int. J. Numer. Meth. Engng., vol. 11, pp. 1719-1732, 1977.
6. Liggett, J. A., and Liu, P. L. F., “Unsteady flow in confined aquifers : a comparison of two boundary integral methods,” Water Resources Research, vol. 15, pp. 861-866, 1979.
7. Tamma, K. K. and Railkar, S. B., “Hybrid transfmite element methodology for nonlinear transient, thermal problems,” Numer. Heat Transfer, vol. 11, pp. 443-459, 1987.
8. Tamma, K. K., and Railkar, S. B., “Transfinite element methodology for nonlinear/linear transient thermal modeling/analysis : process and recent advances,” Int. J. Numer. Meth. Engng., vol. 25, pp. 475-494, 1988.
9. Tamma, K. K. and Railkar, S. B., “A new hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer,” Int. J. Numer. Meth. Engng., vol. 26, pp. 1087-1100, 1988.
10. Tamma, K. K. and Railkar, S. B., “Specially tailored transfinite-element formulation for hyperbolic heat conduction involving non-Fourier effects,” Numer. Heat Transfer, vol. l5 (Part B)., pp. 211-226, 1989.
11. Chen, H. T., “Application of hybrid numerical method to transient heat conduction problems,” Ph. D. Thesis, Mechanical Engineering Department, National Cheng Kung University, R.O.C, 1987.
12. Chen, H. T. and Lin, J. Y., “Application of the Laplace transform to nonlinear transient problems,” Appl. Math. Modelling, vol. 15, pp. 144-151, 1991.
13. Chen, H. T. and Lin, J. Y., “Hybrid Laplace transform technique for non-linear transient thermal problems,” Int. J. Heat Mass Transfer, vol. 34, pp. 1301-1308, 1991.
14. Chen, H. T. and Lin, J. Y., “Application of the hybrid method to transient heat conduction in one-dimensional composite layers,” Comp. Struct., vol. 39, pp. 451-458, 1991.
15. Chen, H. T. and Lin, J. Y., “Application of the Laplace transform to one-dimensional non-linear transient heat conduction in hollow cylinders,” Comm. Appl. Numer. Meth., vol. 7, pp. 241-252, 1991.
16. Lin, J. Y. and Chen, H. T., “Radiar'axrsymmetric transient heat conduction in composite hollow cylinders with variable thermal conductivity,” Engng. Anal. Boundary Elements, vol. 10, pp. 27-33, 1992.
17. 林傑毓, “解析暫態熱傳問題之新數值方法,” 國立成功大學機械工程研究所博士論文, 1994.
18. Fourier, J. B., Theorie Analytique de la Chaleur, Paris, English translation by Freeman, A., The Analytical Theory of Heat, Dover Publication, Inc., New York, 1995.
19. Joseph, D. D., and Preziosi, L., “Heat wave, ” Rev. mod Phys. 61, pp. 41-73, 1989.
20. Caviglia, G., Morro, A., and Straughan, B., ”Thermoelasticity at cryogenic temperatures, ” Int. J. Non-Linear Mech.27, pp. 251-263, 1992.
21. Antaki, P. J., “Hotter than you think,Mach.,” Des. 13, pp. 116-118, 1995.
22. Cattaneo, C., “A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation,” Compte Rendus, vol. 47, pp. 431-433, 1958.
23. Vernotte, P., “Les Paradoxes de la Theorie Continue del’equation De La Chaleur, ” Compte Rendus, vol. 246, pp. 3154-3155, 1958.
24. Vernotte, P., “Some Possible Complications in the Phenomena of Thermal Conducction,” Compte Rendus, vol. 252, pp. 2190-2191, 1961.
25. Carey, G. F. and Tsai, M., “Hyperbolic heat transfer with reflection,” Heat Transfer, vol. 5, pp. 309-327, 1982.
26. Glass, D. E., Ozisik, M. N., McRae, D. S. and Vick, B., “On the numerical solution of hyperbolic heat conduction, ” Numer. Heat Transfer, vol. 8, pp. 497-504, 1985.
27. Rappaz,M., “Modelling of Microstructure Formation in Solidification Process, ”Internal Materials Reviews,vol.34,No.3,pp.93-198,1989.
28. Hsiao,J.S., “An Efficient Algorithm for Finite Difference Analysis of Heat Transfer with Melting and Solidification,” Numerical Heat Transfer,vol.8,pp.653-666,1985.
29. Date, A. W., “A Strong Enthalpy Formulation for the Stefan Problem,”International Journal of Heat and Mass Transfer,vol .34,pp.2231-2283,1991.
30. Dantzig, J. A., “A Strong Enthalpy Formulation for the Stefan Problem,”International Journal for Numerical Methods in Engineer, ”vol.28,pp.1769-1785,1989.
31. Ku, J. Y. and Chan, S. H.,“A generalized Laplace transform technique for phase-change problem,”J.Heat Transfer ASME, vol.112,pp.495-497,1990.
32. 郭晉凱, “混合拉氏轉換法求解相變化熱傳問題,” 國立成功大學工程科學系碩士論文, 2009.
33. Saad, M. , and Didlake, J., “Non-Fourier melting of a semi-infinite solid,”International Journal of Heat Transfer,"vol.99,pp.25-28,1977.
34. DeSocio, L. , and Gualtieri, J. , “A hyperbolic Stefan problem,”Q.Appl.Math.,"vol.41,pp.253-259,1983.
35. Glass, D. E., and Ozisik, M., and McRae,S., “Formulation and Solution of Hyperbolic Stefan Problem," Problem,”J.Appl.Phys., ”vol.76,no.3,pp.1190-1194,1991.
36. Dedavarz, A., and Mitra, K., and Kumar, S.,“ Hyperbolic Temperature Profiles for Laser Surface Interactions,” J.Appl.Phys.,"vol.76,pp.5014-5018,1994.
37. Sobolev,S.L.,“The Local-Nonequilibrium Temperature Field Around the Melting and Crystallization Front Induced by Picosecond Pulsed Laser Irradiation,” International Journal of Thermophysics, ”vol.17,no.5,pp.1089-1097,1996.
38. Anderson, D. A., Tannehill, J. C. and Pletcher, R. H., “Computational Fluid Mechanics and Heat Trans,” Hemisphere, 1990.
39. Honig, G. , and Hirdes, U., “A Method for the Numerical Inversion of Laplace Transforms,” J. of Computational and Applied Mathematics, vol. 10, pp. 113-133, 1984.
40. Tzou, D. Y., “A Unifide Field Approch for Heat Conduction form Micro-to Macro-Scales, ” ASME Journal of Heat Transfer, vol. 117, pp. 8-16, 1995.
41. Tzou, D. Y., “The Generalized Lagging Response in Small-Scale and High-Rate Heating,” International Journal of Heat and Mass Transfer, vol. 38, pp. 3231-3240, 1995.
42. Tzou, D. Y., “Experimental Support for the Lagging Response in Heat Propagation,” AIAA Journal of Thermophysics and Heat Transfer, vol. 9, pp. 686-693, 1995.