| 研究生: |
魏榮良 Wei, Rong-liang |
|---|---|
| 論文名稱: |
基於系統逆動態之數據化最佳控制設計 Data-based LQ Synthesis Based on the Inversed Plant Dynamics |
| 指導教授: |
陳正宗
Chan, Jeng-Tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 系統逆動態 、最佳控制 |
| 外文關鍵詞: | optimal control, inversed plant dynamics |
| 相關次數: | 點閱:40 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般的控制器設計皆需先以系統鑑別求得系統的近似模式,再進行控制器的設計。然而系統識別通常是一個需反覆多次且耗費多時的過程,而所得的結果僅是系統的近似模式而已。但是根據數值化控制設計(DBCS)的理論可以省略系統鑑別這個繁複的步驟,直接由開迴路實驗數據將控制器設計出來,這可以使得設計的過程更為簡單。本研究的主要目的就是利用DBCS的理論透過系統逆動態來做控制的設計,並且由於系統的逆動態模式可以由開迴路的實驗數據求得,而使得設計步驟簡化了許多,所以本研究將探討基於系統的逆動態模式在最佳控制設計方面的性能。
In general, controller design must need system identification to build the parameterized plant model. However, system identification usually is a process that repeatedly and expanded much times, and the system get from system identification just an approximate model. But the data-based controller synthesis (DBCS) can omit the heavy and complicated steps to design the controller directly from open loop plant test data. This synthesis can let the design process to simplify. The purpose of this research is controller design though the Inversed plant dynamics with DBCS, and because of the inversed plant dynamics can be calculated by open loop plant data, so the design process will more simpler. In this research, we will discuss the performance of data-based LQ synthesis on the inversed plant dynamics.
[1] Chan, J.T. (1985) “Design of Control Laws for Adaptive Signal Tracking Systems”, Ph.D. Dissertation, U. of Washingtom, Seattle, Wa.
[2] Chan, J.T. (1995) “Control System Synthesis Based on Plant Test Data”, ASME/JDSMC, vol177, NO.4, pp.484-489.
[3] Chan, J.T. (1996)“Optimal Output Feedback Regulator - A Numerical
Synthesis Approach for Input-Output Data”, ASME/JDSMC, 118, No.2, pp.360-366.
[4] Goh, B.S. (1967) “Optimal Singular Control for Multi-input Linear Systems” J. of Mathematical Analysis and Applications, 20, 534-539.
[5] Jacobson, D.H. (1971) “Totally Singular Quadratic Minimization Problem” IEEE Tran. Auto. Contr., AC-16, Dec..
[6] Kelly, H.J. (1964) “A Transformation Approach to Singular Subarcs in Optimal Trajectory and Control Problems” SIAM, J. of Control, vol. 2, 234-240.
[7] Moore, J.B, and P.J. Moylan (1971) “Generalizations of Singular Optimal Control Theory” Automatica, vol. 7, 591-598.
[8] Speyer, J.L.,and D.H. Jacobson (1971) “Necessary and Sufficient Conditions of Optimality for Singular Control Problem; A Transformation Approach” J. of Mathematical Analysis and Applications, 33, 163-187.
[9] Dorf, R.c., (1980) “Modern Control Systems”, 3rd. Edition, Addison Wesley, New York, N.Y..
[10] Franklin, G.F. and Powell, J.D (1980) “Digital Control of Dynamic Systems”, Addison Wesley, New York, N.Y..