| 研究生: |
吳宥昌 Wu, Yu Chang |
|---|---|
| 論文名稱: |
弱值放大與不確定性原理之間關聯的研究 A Study of Relation Between Weak-Value Amplification and Uncertainty Principle |
| 指導教授: |
陳泳帆
Chen, Yong-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 弱測量 、弱值放大 、光學科爾效應 、不確定性原理 |
| 外文關鍵詞: | weak measurement, weak-value amplification, optical Kerr effect, uncertainty principle |
| 相關次數: | 點閱:98 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文采用基於光學柯爾效應的弱測量系統來研究弱值放大現象,並從理論上確認此現象與不確定性原理之間的關係。 另外,我們根據弱值放大的失效定義了一個建立弱測量的臨界條件。 最後,我們提供一個物理圖像來說明弱值放大和不定性原理的關係。
In this thesis, we use the weak measurement system based on the optical Kerr effect to study the weak value amplification (WWA) phenomenon, which theoretically confirms the relationship between WWA and the uncertainty principle. In addition, we determine the critical conditions for establishing weak measurements based on the failure of WWA. Finally, we provide a physical picture to illustrate the relationship between WWA and the uncertainty principle.
[1] J. von Neumann (2018), “ Mathematical Foundations of Quantum Mechanics (New ed.). ISBN 9781400889921.
[2] P. Busch,“Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle, Springer Netherlands
[3] A. Feizpour, X. Xingxing,and A.M. Steinberg, “Amplifying Single-Photon Nonlinearity Using Weak Measurements”, Phys. Rev. Lett. 1
[4] Y. Aharonov and L. Vailman, “ Properties of a quantum system during the time interval between two measurements Phys. Rev A
[5] S. Lloyd and J.J.E. Slontine, “Quantum feedback with weak measurements”, Phys. Rev. A.
[6] Y. Aharonov, D.Z. Albert, and L. Vaidman, “How the Results of a Measurement of a Component of a Spin-□(1/2) Particle Can Turn Out to be 100,” Phys. Rev. Lett.
[7] A.J. Leggett, “Comment on “How the Results of a Measurement of a Component of a Spin-□(1/2) Particle Can Turn Out to be 100”, Phys. Rev. Lett.
[8] A. Peres, “Quantum Measurements with Postselection”, Phys. Rev. Lett.
[9] N. Katz, M. Neeley, M. Ansmann, Radoslaw C. Bialczak, M. Hofheinz, Erik Lucero, A. O’Connell, H. Wang, A. N. Cleland, John M. Martinis and Alexander N. Korotkov , “Reversal of the Weak Measurement of a Quantum State in a Superconducting Phase Qubit”,Phys. Rev. Lett.
[10] D. Das and Arvind, “Estimation of quantum states by weak and projective measurements”, Phys. Rev. A
[11] D. T. Pegg and S. M. Barnett ,“Phase properties of the quantized single-mode electromagnetic field”, Phys. Rev.A
[12] P. K. DAS* and ARPITA GHOSH, “Phase Changes In Nonlinear Process In Interaction Fock Space” International Journal of Modern Physics B
[13] R. Jozsa (1994). “Fidelity for Mixed Quantum States”. Journal of Modern Optics.
[14] P. Shengshi Pang and Todd A. Burn, “Improving the Precesion of Weak Measurements by Postselection Measurement”, Phys. Rev Lett.
[15] N. Brunner and C. Simon ,“Measuring Small Longitudinal Phase Shifts: Weak Measurements or Standard Interferometry?”, Phys. Rev Lett.
[16] P. Carruthers and M. M. Nieto, “Coherent States and the Number-Phase Uncertainty Relation” ,Phys. Rev. Lett.
[17] A. Stern, Y. Aharonov, Y. Imry, “Phase uncertainty and loss of interference: A general picture”, Phys. Rev A.
[18] A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be consider Complete”, Phys. Rev.
[19] Schrödinger E; Born, M.,“Discussion of probability relations between separated systems. ” Mathematical Proceedings of the Cambridge Philosophical Society.
[20] John A. Vaccaro, “Phase operator on Hilbert space”,Phys. Rev. A.
[21] A. Royer, “Phase states and phase operators for the quantum harmonic osscillator”,Phys. Rev. A.