| 研究生: |
吳建豪 Wu, Jian-hao |
|---|---|
| 論文名稱: |
藉由飛秒雷射製作三維電漿子元件 3D Plasmonic Devices Using Femtosecond Laser Fabrication |
| 指導教授: |
陳顯禎
Chen, Shean-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 多光子激發 、三維電漿子元件 |
| 外文關鍵詞: | multiphoton excitation, 3D plasmonic devices |
| 相關次數: | 點閱:87 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多光子激發(multiphoton excitation,MPE)為一非線性光學現象,其現象與光強二次方成正比,需要在光子密度非常高的情況下才會有較高的機率發生,例如在雷射聚焦處,且必須使用飛秒雷射來達成此現象,進而利用它的特性來製作三維奈微米元件。加工樣品主要以三羥甲基丙烷三丙烯酸酯(trimethylolpropane triacrylate,TMPTA)來作為反應單體,加入光起始劑孟加拉玫瑰素(rose bengal) 1 mM以及共同起始劑三乙醇胺(triethylamine,TEA) 0.1 M,依不同濃度調配後,利用800 nm左右波長之飛秒雷射光束來進行雙光子高分子聚合反應(polymerization)。在製作電漿子元件上選擇加入金奈米柱(nanorod)於我們加工的樹脂內,這樣一來加工結構中即有包含金屬。實驗中使用Ti:sapphire飛秒雷射做為光源,並成功利用資料擷取卡中的FPGA模組控制整體系統,驅動控制雙軸震鏡掃描器與z軸奈米壓電致動器,搭配聲光調變器控制雷射光源在加工樣品上的工作與否,進而將高分子聚合固化。而事先加入螢光染劑於試劑中,可在加工後利用雙光子螢光顯微鏡上觀察三維影像,或利用金奈米柱本身之雙光子致光(two-photon luminescence)訊號來觀測。本論文利用自行研發之飛秒雷射加工系統已完成製作結構複雜的奈微米三維元件,並在樹脂內添加金奈米柱來製作三維電漿子元件。
Multiphoton excitation is a nonlinear optical phenomenon. It occurs only at a small volume around the focusing spot with very high density photon, because the possibility of the phenomenon is proportional to the square of light intensity density. In this thesis, a two-photon polymerization based on a multifunctional femtosecond laser system is used to develop three-dimensional (3D) micro-structures. The two-photon polymerization of trimethylolpropane triacrylate (TMPTA) with initiator rose bengal of 1 mM and a co-initiator triethylamine of 0.1 M is excited by using a Ti:sapphire femtosecond laser at the wavelength about 800 nm. The laser focusing spot is controlled on or off through 3D TMPTA volume solution, and then the two-photon polymerization will occur along the designed pattern. Furthermore, gold nanorods are added into the TMPTA resin for fabricating 3D plasmonic devices. The femtosecond laser fabrication system has been successfully developed. Its real-time controller based on a NI data equitation board with field programmable gate array modules can regulate a two-axis galvanometer, a z-axis piezoelectric actuator, and an acoustic-optic modulator to depict 3D micro-devices under designed pattern. The polymer micro-structures can be imaged by two-photon excited fluorescence microscopy with rhodamine 6G stain. Also, two-photon luminescence can be found in the plasmonic devices. In summary, we have successfully fabricated complex 3D micro-devices and attempt to develop 3D plasmonic devices with gold nanorods.
[1]S. Shoji and S. Kawata, “Photofabrication of Three-dimensional Photonic Crystals by Multibeam Laser Interference into a Photopolymerizable Resin,” Appl. Phy. Lett. 76, 2668-2670 (2000).
[2]M. Goepper-Mayer, “Ober Elementaraktemit zwei Quantensprungen,” Annalen der Physik 9, 273-294 (1931).
[3]W. Denk, J. H Stricker, and W. W. Webb, “Two-photon Laser Scanning Fluorescencce Microscopy,” Science 248, 73-76 (1990).
[4]S. Kawata , H-B. Sun, T. Tanaka, and K. Takada, “Finer Features for Functional Microdevices,” Nature 412, 697-698 (2001).
[5]S. Maruo, O. Nakamura and S. Kawata, “Three-dimensional Microfabrication with Two-photon-absorbed Photopolymerization,” Opt. Lett. 22, 132-134 (1997).
[6]J. H. Stricker and W. W. Webb, “Three-dimensional Optical Data Storage in Refractive Media by Two-photon Point Excitation,” Opt. Lett. 16, 1780-1782 (1991).
[7]D. A. Parthenopoulos and P. M. Rentzepis, “3-Dimensional Optical Storage Memory,” Science 245, 843-845 (1989).
[8]T. A. Taton and D. J. Norris, “Defective Promise in Photonics, ” Nature 416, 685-686 (2002).
[9]H-B. Sun, X. Xu, S. Juodkazis, K. sun, M.Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Arbitrary-lattice Photonic Crystala Created by Multiphoton Microfabrication,” Opt. Lett. 26, 325-327 (2001).
[10]M. Straub and M. Gu, “Near-infrared Photonic Crystals with High-order Bandgaps Generated by Two-photon Photopolymerization,” Opt. Lett. 27, 1824-1826 (2002).
[11]S. Kawata and H-B. Sun , “Two-photon Polymerization as a Tool for Making Micro-devices,” Appl. Sur. Sci. 208, 153-158 (2003).
[12]http://www.spectra-physics.com/
[13]http://www.neostech.com/
[14]http://www.cambridgetechnology.com/
[15]http://www.ni.com/
[16]W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer, New York (2005).
[17]W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf and C. Biskup, “Fluorescence Lifetime Imaging by Time-Correlated Single-Photon Counting,” Microscopy Research and Technique 63, 58-66 (2004).
[18]P. A. Franken, “Generation of Optical Harmonics,” Phy. Rev. Lett. 7, 118-119 (1961).
[19]P. J. Campagnola and L. M. Loew, “Second-harmonic Imaging Microscopy for Visualizing Biomolecular Arrays in Cells, Tissues and Organisms,” Nat. Biotechnol. 21, 1356-1360 (2003).
[20]W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, ”Live Tissue Intrinsic Emission Microscopy Using Multiphoton-excited Native Fluorescence and Second Harmonic Generation,” PNAS 100, 7075-7080 (2003).
[21]N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, A. M. T. Wright, N. Atkinson, and R. R. Kortum, “Development of a Multivariate Statistical Algorithm to Analyze Human Cervix Tissue Fluorescence Spectra Acquired in Vivo,” Lasers Surg. Med. 19, 46-62 (1996).
[22]H. Wallrabe and A. Periasamy, “Imaging Protein Molecules Using FRET and FLIM Microscopy,” Curr. Opi. in Biotech. 16, 19-27 (2005).
[23]H-B. Sun, T. Kawakami, Y. Xu, J. Ye, S. Matsuo, H. Misawa, M. Miwa and R. Kaneko, “Real Three-dimensional Microstructures Fabricated by Photopolymerization of Resins Through Two-photon Absorption,” Opt. Lett. 25, 1110-1112 (2000).
[24]G. Odian, Principles of Polymerization, 3rded. Wiley, New York (1991).
[25]S. Basu, L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola, “Multiphoton Excited Fabrication of Collagen Matrixes Cross-Linked by a Modified Benzophenone Dimer: Bioactivity and Enzymatic Degradation,” Biomacromo. 6, 1465-1474 (2005).
[26]J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron Multiphoton Free-form Fabrication of Proteins and Polymers: Studies of Reaction Efficiencies and Applications in Sustained Release,” Macromo. 33, 1514-1523 (2000).
[27]L. P. Cunningham, M. P. Veilleux, and P. J. Campagnola, “Freeform Multiphoton Excited Microfabrication for Biological Applications Using a Rapid Prototyping CAD-based Approach,” Opt. Lett. 14, 8613-8621 (2006).
[28]T. Nakagawa and Y. Marutani, Layered manufacturing systems: the latest development of three-dimensional copying technologies, Kogyo Chosakai (1996).
[29]K. F. Leong, C. M. Cheah and C. K. Chua, “Solid Freeform Fabrication of Three-dimensional Scaffolds for Engineering Replacement Tissues and Organs,” Biomat. 24, 2363-2378 (2003).
[30]F. J. Giessibl,“Advances in Atomic Force Microscopy,” Rev. of Mod. Phy. 75, 949-978 (2003).
[31]H-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon Photopolymerization and Diagnosis of Three-dimensional microstructures Containing Fluorescent Dyes,” Appl. Phy. Lett. 79, 1411-1413 (2001).
[32]H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, “Photochem CAD: A Computer-aided Design Andresearch Tool in Photochemistry, ” Photochem. and Photobio. 68, 141-142 (1998).