| 研究生: |
黃琳皓 Huang, Lin-Hao |
|---|---|
| 論文名稱: |
以標準化及時空聚類提昇災情通報之可用性 Improving the usability of disaster situation report by standardization and spatio-temporal clustering |
| 指導教授: |
洪榮宏
Hong, Jung-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 災情通報 、EDXL-SitRep 、社群資料 、聚類分析 |
| 外文關鍵詞: | disaster situation report, EDXL-SitRep, social media, clustering analysis |
| 相關次數: | 點閱:111 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以我國現行之防救災體系而言,當面對緊急事件應變時,各部會依其職責提供相關之災情資訊,應變中心則肩負災情資訊綜整與決策之任務。多來源之災情資訊不僅止於來自於政府的結構化資訊,隨著社群媒體與大眾的生活緊密度上升,社群也成為提供資訊之管道來源,然而其資料特性影響後續的標準化過程。此外,以聚集性的觀點分析災情通報資料之時空因子,具有較高時空聚集性之區域可被視為可能之災害區域,並藉由各項指標判斷聚類之時空表現,以期在應變時能作為決策的輔助資訊。
EDXL-SitRep由OASIS提出,適用於緊急應變中資訊交換的一套準則架構,而本研究以該標準為基礎,檢視其元素是否能滿足5W1H以概括緊急應變資訊,並基於滿足5W1H框架 之EDXL-SitRep標準探討不同來源之資訊是否能夠提供足夠的資訊,來源包含來自於政府的感測網資訊與來自於大眾的社群資料。結果顯示EDXL能滿足災情資訊之標準化,尤其來自政府的資料因其結構化之內容與政府之規範,更容易提供完整且持續更新的SitRep;社群資料中又可概略區分出直接來自大眾的資料與透過志工、協力單位提供的資料,而前者代表性的資料為來自臉書的資料,統計資料顯示約三成的臉書資料與約五成的協力單位資料,經過對比驗證後是可直接作為使用,意味著未來仍需透過後端資料庫的建立、教育推廣、志工訓練等方式以提高社群資料的使用性。
經驗證後的社群資料,可在政府現有災情監控之機制外提供更貼近真實的災情狀態。聚類分析為常見之資料分析方法,而災情資訊同時具備空間與時間之考量,因此藉由時間聚集性與時空聚集性的觀點來解析社群資料。結果顯示,單考慮時間因素的聚類在空間指標上表現並不理想,能反映出整體資料的時間趨勢以及擴展之方向,但在空間表現上沒有良好的表現。不同聚類方式能凸顯之重點不同,在同時考慮時間與空間因素下,DBSCAN透過參數設定,找到相對高密度的聚類,反映出災害通報頻傳的地點,也能顯示出熱區之類的訊息。階層式聚類則適用於找出主要聚類,但資料筆較少時,多階層的分類容易形成規模很小的聚類。k-means則能找出整體資料的趨勢。
Taiwan is located in an area which is usually affected by the natural disasters. After the disasters, each agencies would start to collect the disaster information which is related to their duty. And the CEOC would play a role to integrate all kinds of resources then take corresponding response. On the other hand, people like to share everything through the social media. So it also become one way to collect the disaster information. So the problem would be how to deal with the heterogeneous data and improve the usability. EDXL is a set of standard which is used to promote the data sharing between agencies. So we use the EDXL-SitRep to standardize the data from the government and social media. The result shows that the EDXL-SitRep can help to regulate the form of disaster information. However the social media needs the certification before the standardization. Because of the characteristics of data uncertainty and incompleteness. As for improving the usability of social media, clustering analysis is a common method to analysis social media. So we use the temporal clustering and spatio-temporal clustering to test the social media data. The result shows that DBSCAN is the more suitable way to make the spatio-temporal clustering. And consider the spatial and temporal factors simultaneously would be a better way to analysis the disaster
situation reports.
林雪美. (2004). 台灣地區近三十年自然災害的時空特性. 台灣師大地理研究報告, 41, 99-128.
施邦築. (2004). 台灣災害防救體系之發展與現況. 國家災害防救科技中心災害防救電子報.
周韻采, 李天申. (2011). 社會網絡於災防之應用實例. 研考雙月刊, 35(4), 105-116.
陳亮全, 林李耀, 陳永明, 張志新, 陳韻如, 江申, ... & 游保杉. (2011). 氣候變遷與災害衝擊. 臺灣氣候變遷科學報告, 311-356.
吳郁玶. (2012). 自發性地理資訊在救災應變的效能與空間特性─以莫拉克風災網路災情平台為例.
邓敏, 刘启亮, 王佳, & 石岩. (2012). 时空聚类分析的普适性方法. 中国科学: 信息科学, 42(1), 111-124.
蔡孟涵, 黃詩閔, 康仕仲, & 賴進松. (2013). 防災決策支援系統. 災害防救科技與管理學刊, 2(2), 21-33.
宋爾軒, 蔡孟涵, 康仕仲, 賴進松, & 譚義績. (2014). 防災資訊儀表板開發研究. Journal of Disaster Management Vol, 3(1), 69-94.
王聖銘. (2015). 群眾外包災情資訊之評估與檢證―以莫拉克颱風為例. 災害防救科技與管理學刊, 4(1), 31-48.
于宜強, 吳宜昭, 龔楚媖, 黃柏誠, 王安翔, 李宗融& 林冠伶. (2016). 2015 年台灣地區極端降雨事件彙整與分析. 國家災害防救科技中心.
林貝珊, 盧鏡臣, 鄧子正. (2016). 台灣近年重大災害及其對防救災體系之影響回顧. 警察科技學院 80 週年校慶專書.
徐偉哲, 周侑德, 蔡孟涵, 李孟學, 李奕芬, & 康仕仲. (2017). 導入民眾外包整合低品質災害通報資料. 中國土木水利工程學刊, 29(1), 17-25.
劉維則. (2018). 災害共通示警發展與應用. 水保局技研小組.
郭玫君. (2019). 台灣示警於社群軟體之應用. 國家災害防救科技中心.
災害防救法. (2019).
中央災害應變中心作業要點. (2019).
Andrienko, G., Andrienko, N., Bak, P., Kisilevich, S., & Keim, D. (2009, October). Analysis of community-contributed space-and time-referenced data (example of flickr and panoramio photos). In 2009 IEEE symposium on visual analytics science and technology (pp. 213-214). IEEE.
Acar, A., & Muraki, Y. (2011). Twitter for crisis communication: lessons learned from Japan's tsunami disaster. International Journal of Web Based Communities, 7(3), 392-402.
Adam, N., Eledath, J., Mehrotra, S., & Venkatasubramanian, N. (2012, October). Social media alert and response to threats to citizens (SMART-C). In 8th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom) (pp. 181-189). IEEE.
Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and scholarship. Journal of computer‐mediated Communication, 13(1), 210-230.
Birant, D., & Kut, A. (2007). ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data & Knowledge Engineering, 60(1), 208-221.
Bird, D., Ling, M., & Haynes, K. (2012). Flooding Facebook – the use of social media during the Queensland and Victorian floods. The Australian Journal of Emergency Management, 27(1), 27–33.
Beth Hayden,https://www.copyblogger.com/history-of-social-media/
Crandall, D. J., Backstrom, L., Huttenlocher, D., & Kleinberg, J. (2009, April). Mapping the world's photos. In Proceedings of the 18th international conference on World wide web (pp. 761-770).
Chen, W. C., Battestini, A., Gelfand, N., & Setlur, V. (2009, November). Visual summaries of popular landmarks from community photo collections. In 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers (pp. 1248-1255). IEEE.
Cobb, C., McCarthy, T., Perkins, A., Bharadwaj, A., Comis, J., Do, B., & Starbird, K. (2014, February). Designing for the deluge: understanding & supporting the distributed, collaborative work of crisis volunteers. In Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing (pp. 888-899).
Chaturvedi, A., Simha, A., & Wang, Z. (2015). ICT infrastructure and social media tools usage in disaster/crisis management.
De Longueville, B., Smith, R. S., & Luraschi, G. (2009, November). " OMG, from here, I can see the flames!" a use case of mining location based social networks to acquire spatio-temporal data on forest fires. In Proceedings of the 2009 international workshop on location based social networks (pp. 73-80).
Deng, T., Huang, Y., Yu, S., Gu, J., Huang, C., Xiao, G., & Hao, Y. (2013). Spatial-temporal clusters and risk factors of hand, foot, and mouth disease at the district level in Guangdong Province, China. PloS one, 8(2).
Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd (Vol. 96, No. 34, pp. 226-231).
Endsley, T., Wu, Y., Reep, J., Eep, J., & Reep, J. (2014, January). The source of the story: Evaluating the credibility of crisis information sources. In ISCRAM.
Goodchild, M. F. (2007). Citizens as voluntary sensors: spatial data infrastructure in the world of Web 2.0. International journal of spatial data infrastructures research, 2(2), 24-32.
Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4), 211-221.
Girardin, F., Calabrese, F., Dal Fiore, F., Ratti, C., & Blat, J. (2008). Digital footprinting: Uncovering tourists with user-generated content. IEEE Pervasive computing, 7(4), 36-43.
Gelernter, J., & Mushegian, N. (2011). Geo‐parsing messages from microtext. Transactions in GIS, 15(6), 753-773.
Gao, X., Cao, J., He, Q., & Li, J. (2013, August). A novel method for geographical social event detection in social media. In Proceedings of the Fifth International Conference on Internet Multimedia Computing and Service (pp. 305-308).
Han, J., & Kamber, M. (2006). Data mining: Concepts and techniques (2nd ed.). San Francisco: Morgan Kaufmann Publishers.
Hughes, A. L., Palen, L., Sutton, J., Liu, S. B., & Vieweg, S. (2008, May). Site-seeing in disaster: An examination of on-line social convergence. In Proceedings of the 5th International ISCRAM Conference (pp. 44-54). Washington, DC.
Hua, T., Zhao, L., Chen, F., Lu, C. T., & Ramakrishnan, N. (2016). How events unfold: spatiotemporal mining in social media. SIGSPATIAL Special, 7(3), 19-25.
Iannella, R., & Henricksen, K. (2007, May). Managing information in the disaster coordination centre: Lessons and opportunities. In Proceedings of the 4th International ISCRAM Conference (B. Van de Walle, P. Burghardt and C. Nieuwenhuis, eds.) (pp. 1-11).
Iannella, R., Robinson, K., & Rinta-Koski, O. (2007, June). Towards a framework for crisis information management systems (CIMS). In Proceedings of the 14th Annual TIEMS Conference.
Ifrim, G., Shi, B., & Brigadir, I. (2014, April). Event detection in twitter using aggressive filtering and hierarchical tweet clustering. In Second Workshop on Social News on the Web (SNOW), Seoul, Korea, 8 April 2014. ACM.
Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc.. 1−334.
Kendra, J. M. and Wachtendorf, T. (2003) Reconsidering Convergence and Converger: Legitimacy in Response to the World Trade Center Disaster, Terrorism and Disaster: New Threats, New Ideas:Research in Social Problems and Public Policy, 11, 97-122.
Kisilevich, S., Mansmann, F., Nanni, M., & Rinzivillo, S. (2009). Spatio-temporal clustering. In Data mining and knowledge discovery handbook (pp. 855-874). Springer, Boston, MA.
Kireyev, K., Palen, L., & Anderson, K. (2009, December). Applications of topics models to analysis of disaster-related twitter data. In NIPS workshop on applications for topic models: text and beyond (Vol. 1). Canada: Whistler.
Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business horizons, 53(1), 59-68.
Kisilevich, S., Mansmann, F., Bak, P., Keim, D., & Tchaikin, A. (2010, February). Where would you go on your next vacation? A framework for visual exploration of attractive places. In 2010 Second International Conference on Advanced Geographic Information Systems, Applications, and Services (pp. 21-26). IEEE.
Kisilevich, S., Mansmann, F., & Keim, D. (2010, June). P-DBSCAN: a density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos. In Proceedings of the 1st international conference and exhibition on computing for geospatial research & application (pp. 1-4).
Kent, J. D., & Capello Jr, H. T. (2013). Spatial patterns and demographic indicators of effective social media content during theHorsethief Canyon fire of 2012. Cartography and Geographic Information Science, 40(2), 78-89.
Kim, J., & Mahmassani, H. S. (2015). Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories. Transportation Research Procedia, 9, 164-184.
Liu, S. B., Palen, L., Sutton, J., Hughes, A. L., & Vieweg, S. (2008, May). In search of the bigger picture: The emergent role of on-line photo sharing in times of disaster. In Proceedings of the information systems for crisis response and management conference (ISCRAM) (pp. 4-7).
Lee, R., & Sumiya, K. (2010, November). Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection. In Proceedings of the 2nd ACM SIGSPATIAL international workshop on location based social networks (pp. 1-10).
Lindsay, B. R. (2011). Social media and disasters: Current uses, future options, and policy considerations.
Lingad, J., Karimi, S., & Yin, J. (2013, May). Location extraction from disaster-related microblogs. In Proceedings of the 22nd international conference on world wide web (pp. 1017-1020).
Lee, I., Cai, G., & Lee, K. (2014). Exploration of geo-tagged photos through data mining approaches. Expert Systems with Applications, 41(2), 397-405.
Meneklis, B., Kaliontzoglou, A., Polemi, D., & Douligeris, C. (2005, March). Applying the ISO RM-ODP standard in e-government. In International Conference on e-Government (pp. 213-224). Springer, Berlin, Heidelberg.
Murugesan, S. (2007). Understanding Web 2.0. IT professional, 9(4), 34-41.
Maia, M., Almeida, J., & Almeida, V. (2008, April). Identifying user behavior in online social networks. In Proceedings of the 1st workshop on Social network systems (pp. 1-6).
Macias, W., Hilyard, K., & Freimuth, V. (2009). Blog functions as risk and crisis communication during Hurricane Katrina. Journal of Computer-Mediated Communication, 15(1), 1-31.
Malone, T. W., Laubacher, R., & Dellarocas, C. (2009). Harnessing crowds: Mapping the genome of collective intelligence.
Mendoza, M., Poblete, B., & Castillo, C. (2010). Twitter under crisis: Can we trust what we RT? In Proceedings of the first workshop on social media analytics Washington, DC: ACM, (pp. 71–79).
McGarry, D. P., & Chen, C. R. (2010, November). IC. NET—Incident Command “Net”: A system using EDXL-DE for intelligent message routing. In 2010 IEEE International Conference on Technologies for Homeland Security (HST) (pp. 197-203). IEEE.
Merchant, R. M., Elmer, S., & Lurie, N. (2011). Integrating social media into emergency-preparedness efforts. The New England Journal of Medicine, 289–291.
MacEachren, A. M., Robinson, A. C., Jaiswal, A., Pezanowski, S., Savelyev, A., Blanford, J., & Mitra, P. (2011, July). Geo-twitter analytics: Applications in crisis management. In 25th international cartographic conference (pp. 3-8).
Memon, I., Chen, L., Majid, A., Lv, M., Hussain, I., & Chen, G. (2015). Travel recommendation using geo-tagged photos in social media for tourist. Wireless Personal Communications, 80(4), 1347-1362.
Moi, M., Friberg, T., Marterer, R., Reuter, C., Ludwig, T., Markham, D., ... & Muddiman, A. (2015). Strategy for processing and analyzing social media data streams in emergencies. In 2015 2nd International Conference on Information and Communication Technologies for Disaster Management (ICT-DM) (pp. 42-48). IEEE.
Nagarajan, M., Gomadam, K., Sheth, A. P., Ranabahu, A., Mutharaju, R., & Jadhav, A. (2009, October). Spatio-temporal-thematic analysis of citizen sensor data: Challenges and experiences. In International Conference on Web Information Systems Engineering (pp. 539-553). Springer, Berlin, Heidelberg.
OASIS. (2013). Emergency Data Exchange Language Distribution Element (EDXL-DE) Version 2.0 http://docs.oasis-open.org/emergency/edxl-de/v2.0/edxl-de-v2.0.html
OASIS. (2016). Emergency Data Exchange Language Situation Reporting (EDXL-SitRep) Version 1.0 http://docs.oasis-open.org/emergency/edxl-sitrep/v1.0/edxl-sitrep-v1.0.html
Palen, L., & Liu, S. B. (2007, April). Citizen communications in crisis: anticipating a future of ICT-supported public participation. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 727-736).
Palma, A. T., Bogorny, V., Kuijpers, B., & Alvares, L. O. (2008, March). A clustering-based approach for discovering interesting places in trajectories. In Proceedings of the 2008 ACM symposium on Applied computing (pp. 863-868).
Palen, L., Vieweg, S., Liu, S. B., & Hughes, A. L. (2009). Crisis in a networked world: Features of computer-mediated communication in the April 16, 2007, Virginia Tech event. Social Science Computer Review, 27(4), 467-480.
Poiani, T. H., dos Santos Rocha, R., Degrossi, L. C., & de Albuquerque, J. P. (2016, January). Potential of collaborative mapping for disaster relief: A case study of OpenStreetMap in the Nepal earthquake 2015. In 2016 49th Hawaii International Conference on System Sciences (HICSS) (pp. 188-197). IEEE.
Qu, Y., Huang, C., Zhang, P., & Zhang, J. (2011, March). Microblogging after a major disaster in China: a case study of the 2010 Yushu earthquake. In Proceedings of the ACM 2011 conference on Computer supported cooperative work (pp. 25-34).
Reuter, C., Ludwig, T., Kaufhold, M. A., & Spielhofer, T. (2016). Emergency services׳ attitudes towards social media: A quantitative and qualitative survey across Europe. International Journal of Human-Computer Studies, 95, 96-111.
Reuter, C., & Kaufhold, M. A. (2018). Fifteen years of social media in emergencies: a retrospective review and future directions for crisis informatics. Journal of Contingencies and Crisis Management, 26(1), 41-57.
Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (1998). Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data mining and knowledge discovery, 2(2), 169-194.
Sutton, J. N., Palen, L., & Shklovski, I. (2008). Backchannels on the front lines: Emergency uses of social media in the 2007 Southern California Wildfires.
Shepitsen, A., Gemmell, J., Mobasher, B., & Burke, R. (2008, October). Personalized recommendation in social tagging systems using hierarchical clustering. In Proceedings of the 2008 ACM conference on Recommender systems (pp. 259-266).
Shklovski, I., Palen, L., & Sutton, J. (2008, November). Finding community through information and communication technology in disaster response. In Proceedings of the 2008 ACM conference on Computer supported cooperative work (pp. 127-136).
St Denis, L. A., Hughes, A. L., & Palen, L. (2012). Trial by fire: The deployment of trusted digital volunteers in the 2011 shadow lake fire. Proceedings of ISCRAM 2012.
Starbird, K. (2013, April). Delivering patients to sacré oeur: collective intelligence in digital volunteer communities. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 801-810).
Shi, J., Mamoulis, N., Wu, D., & Cheung, D. W. (2014, June). Density-based place clustering in geo-social networks. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data (pp. 99-110).
Sagar, V. C. (2016). As the water recedes: Sri Lanka rebuilds.
Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 1-21.
Singh, A., Shukla, N., & Mishra, N. (2018). Social media data analytics to improve supply chain management in food industries. Transportation Research Part E: Logistics and Transportation Review, 114, 398-415.
Tamura, K., & Ichimura, T. (2013, October). Density-based spatiotemporal clustering algorithm for extracting bursty areas from georeferenced documents. In 2013 IEEE International Conference on Systems, Man, and Cybernetics (pp. 2079-2084). IEEE.
Unankard, S., Li, X., & Sharaf, M. A. (2013). Location-based emerging event detection in social networks. In Web Technologies and Applications (pp. 280-291).Springer Berlin Heidelberg.
Vieweg, S., Hughes, A. L., Starbird, K., & Palen, L. (2010, April). Microblogging during two natural hazards events: what twitter may contribute to situational awareness. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 1079-1088).
Vergeti, D., Ntalaperas, D., & Alexandrou, D. (2018, October). Semantically Enhanced Interoperability in Health Emergency Management. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 368-385). Springer, Cham.
Wen, T. H., Lin, N. H., Lin, C. H., King, C. C., & Su, M. D. (2006). Spatial mapping of temporal risk characteristics to improve environmental health risk identification: a case study of a dengue epidemic in Taiwan. Science of the Total Environment, 367(2-3), 631-640.
Wang, M., Wang, A., & Li, A. (2006, August). Mining spatial-temporal clusters from geo-databases. In International Conference on Advanced Data Mining and Applications (pp. 263-270). Springer, Berlin, Heidelberg.
Wei, Y., Santhana-Vannan, S. K., & Cook, R. B. (2009, August). Discover, visualize, and deliver geospatial data through OGC standards-based WebGIS system. In 2009 17th International Conference on Geoinformatics (pp. 1-6). IEEE.
Wiegand, S., & Middleton, S. E. (2016, April). Veracity and velocity of social media content during breaking news: Analysis of November 2015 Paris shootings. In Proceedings of the 25th international conference companion on world wide web (pp. 751-756).
Yin, J., Karimi, S., & Lingad, J. (2014, November). Pinpointing locational focus in microblogs. In Proceedings of the 2014 Australasian document computing symposium (pp. 66-72).
Zook, M., Graham, M., Shelton, T., & Gorman, S. (2010). Volunteered geographic information and crowdsourcing disaster relief: a case study of the Haitian earthquake. World Medical & Health Policy, 2(2), 7-33.