簡易檢索 / 詳目顯示

研究生: 林韋亨
Lin, Wei-Heng
論文名稱: 以有機金屬氣相沉積法成長砷化鎵系列長波長半導體雷射之研究
Investigation of Long Wavelength GaAs-based Semiconductor Lasers Grown by MOVPE
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 89
中文關鍵詞: 面射型共振腔雷射砷化鎵低起振電流密度長波長半導體雷射銻砷化鎵量子井應力補償有機金屬氣相沉積法半導體雷射多重量子位障
外文關鍵詞: InGaAs QW, semiconductor lasers, GaAs, strain-compensated, long wavelength lasers, MOVPE, low threshold current density, VCSELs
相關次數: 點閱:169下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著網際網路頻寬日益增加的需求下,電信科技以迅速的腳步發展高速光纖通訊系統。而半導體雷射發1.3與1.55微米的訊號源,有著零色散與最低耗損的優點,為長距離傳輸最適合的波段,促使它成為光纖通訊最重要的元件。傳統的磷化銦系列雷射元件可達到上述發光波段的需求,由於其價格昂貴且溫度特性不佳,同時也不適用於面射型雷射的製作,使它的發展有待商榷。
    本論文中,我們嘗試以有機金屬化學氣相沉積法成長長波長砷化鎵系列的量子井雷射以取代傳統的磷化銦系列雷射。在調整最佳化長晶參數後,我們在砷化鎵基板上成長了高應力的銻砷化鎵/砷化鎵量子井雷射;接著我們進一步運用應力補償的結構於高應力的銻砷化鎵量子井以改善磊晶品質,在經過邊射型雷射的製程並加以量測後,220每平方公分分之安培之非常低起振電流密度1235奈米波段的雷射元件為我們所實現。另外,我們亦研製了加入應力補償概念之磷砷化鎵/砷化鎵多重量子位障,在元件加入了此結構後,室溫下的起振電流密度為65每平方公分分之安培,特性溫度102凱氏溫度,較未使用此結構的雷射元件其光電與溫度特性都有所提升。
    在未來,我們可以嘗試成長銻砷化鎵/砷化銦鎵雙層量子井雷射,我們認為這樣的雷射元件有更好的優勢發光波長超越1.3微米,甚至到達1.55微米。另外,利用有機金屬化學氣相沉積法成長銻砷化鎵量子井面射型共振腔雷射,亦是未來的挑戰之一。

    In recent years, the development in the telecommunication business has increased and these applications include long-distance, short distance, and high-speed optical fiber communications systems, has increased the for significantly higher internet bandwidth used in these applications day by day. Semiconductor laser diode emitting at the wavelength of 1.3-1.55μm is one of the most important optoelectronic devices in optical-fiber communication due to their advantages of zero dispersion and lowest loss respectively. They are the most suitable transmission wavelength regions of long haul fiber communication. The long wavelength can be achieved by growing conventional InP-based lasers. Not only it is very expensive and the temperature characteristics are not good enough, but also not suitable to make VCSELs.
    In this thesis, we try to grow GaAs-based QW lasers by MOVPE to replace InP-based long wavelength lasers. After optimization of the growth condition, highly strain GaAsSb/GaAs QWs can be grown on GaAs substrates by MOVPE successfully; we design various laser structures with strain compensation layer to improve the crystal quality of highly strained GaAsSb QW. Lasing wavelength of 1235nm with very low threshold current density of 220A/cm2 edge emitting lasers were demonstrated successfully. In addition, we also study GaAsP/GaAs MQB with strain-compensated effects. Device with this structure get the better opto-electronic and thermal characteristic, room temperature threshold current density is 65A/cm2 and the characteristic temperature is 102K.
    In the future, we will try to grow GaAsSb/InGaAs bi-layer QW lasers. We believe the bi-layer QW laser has an advantage in lasing peak wavelength above 1.3-μm, even achieving 1.55-μm. Besides, GaAsSb QW VCSELs all grow by MOVPE is another challenge.

    Contents Abstract (Chinese)....................................................................................I Abstract (English)..................................................................................III Acknowledgements .................................................................................V Contents.................................................................................................VII Table Captions........................................................................................IX Figure Captions........................................................................................X Chapter 1 Introduction 1.1 Background .........................................................................................1 1.2 Possible GaAs-based lasers ................................................................5 Chapter 2 Investigation of semiconductor lasers 2.1 MOVPE system.................................................................................16 2.2 Laser structures …………………….................................................19 2.3 Device fabrication .............................................................................19 2.4 Laser measurement system................................................................21 Chapter 3 Investigation of GaAsSb/GaAs QW lasers 3.1 Introduction........................................................................................26 3.2 Device performance (samples A1, A2, and A3)................................28 3.3 Device performance (samples A4 andA5).........................................30 3.4 Summary of GaAsSbx/GaAs SQW and DQW lasers……………....31 Chapter 4 Optimization of GaAsSb QW lasers 4.1 Introduction .......................................................................................46 4.2 Device performance (samples B1, B2, B3 and B4)...........................48 4.3 Device performance (samples B5, B6 and B7).................................49 4.4 Device performance- Series 1 (samples B8, B9 and B10)................51 Device performance- Series 2 (samples B11 and B12).....................52 4.5 Summary of the strain compensation GaAsSb QW lasers................53 Chapter 5 InGaAs SQW lasers with strain compensation 5.1 Introduction........................................................................................74 5.2 Laser structures..................................................................................74 5.3 Device performance (samples C1, C2 andC3)..................................75 5.4 Summary of InGaAs SQW lasers with strain compensation……….76 Chapter 6 Conclusion and prospects 6.1 Conclusion.........................................................................................83 6.2 Future prospects.................................................................................85

    References-Chapter1
    [1] G. Keiser, Optical Fiber Communications., New York: McGraw-Hill, 2000.
    [2] J. S. Harris, Jr., “Tunable Long-Wavelength Verical-Cavity Lasers: The Engine of Next Generation Optical Networks,” IEEE J.select. Topics Quantum Electronic., vol. 6, No.6, pp. 1145-1160, Nov./Dec. 2000.
    [3] J. S. Harris Jr., “GaInNAs long-wavelength lasers: prograss and challenges,” Semicond. Sci. Technol., vol. 17, pp. 880-891,2002.
    [4] T. Namegaya, N. Matsumoto, N. Yamanaka, N. Iwai, H. Nakayama, and A. Kasukawa, “Effects of Well Numbers in 1.3-μm GaInAsP/InP GRIN-SCH Strained-Layer Quantum Well Lasers,” IEEE. J. Quantum Electron., Vol.30, No.2, pp.578-584, February 1994.
    [5] A. F. Phillips, A. F. Sweeney, A.R. Adams, and P. J. A. Thijs, “Temperature Dependence of 1.3- and 1.55-μm Compressively Strained InGaAs(P) MQW Semiconductor Lasers,” IEEE. J. Select. Topics Quantum Electron., Vol.5, No.3, pp.401-412, May/June 1999.
    [6] H. C. Casey, Jr., “Temperature dependence of threshold current density on InP-Ga0.28In0.72As0.6P0.4 (1.3 μm) double heterostructure lasers,” J.Appl. Phys., Vol.56(7), pp.1959-1964, 1984.
    [7] C. Wilmsen, H. Temkin, and L.A. Coldren, Vertical-Cavity Surface-Emitting Lasers. Cambridge, UK: Cambridge, 1999, ch.8, pp.318.
    [8] D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, Y. Long, and K. Carey, “Room-temperature continuous-wave operation of 1.54-μm vertical-cavity lasers,” IEEE Photon. Technol. Lett., Vol.7(11), pp.1225-1227, Nov. 1995.
    [9] J. Boucart, C. Starck, F. Gaborit, A. Plais, N. Bouche, E. Derouin, L. Golstein, C. Fortin, D. Carpentier, P. Salet, F. Brillouet, and J. Jacquet, “1-mW CW-RT monolithic VCSEL at 1.55μm,” IEEE Photon. Technol. Lett., Vol.11(6), pp.629-631, June 1999.
    [10] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe, “1.3μm room temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett., 73, pp. 2564-2566, 1998.
    [11] D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum dot lasers,” IEEE J. Select. Topics Quantum Electronic., vol. 3, pp. 196, 1997.
    [12] K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs/GaAs quantum dot at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol. Lett., vol.11(10), pp.1205-1207, Oct. 1999.
    [13] A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-Threshold Current Density 1.3-μm Quantum-Dot Lasers with the Dots-in-a-Well (DWELL) Structure,” IEEE Photon. Technol. Lett., vol.12(6), pp.591-593, June. 2000.
    [14] P. Bhattacharya, K. K. Kamath, J. Singh, D. Klotzkim, J. Phillips, HT. Jiang, N. Chervela, T. B. Norris, T. Sosnowski, J. Laskar, and M. R. Murty, “In(Ga)As/GaAs Self-Organized Quantum Dot Lasers: DC and Small-Signal Modulation Properties,” IEEE Trans. Electron. Devices, vol.46, No.5, pp.871-883, 1999.
    [15] P. Bhattacharya, D. Klozkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-Speed Modulation and Switching Characteristics of In(Ga)As-Al(Ga)As Self-Organized Quantum-Dot Lasers,” IEEE J. Select. Topics Quantum Electronic., vol.6, No.3, pp.426-438, May/June 2000.
    [16] T. Takeuchi, Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan and H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett., vol. 80, pp.2445-2447, 2005.
    [17] R. Marcks von Wurtemberg, P. Sundgren, J. Berggren, M. Hammar, M. Ghisoni, E. Odling, V. Oscarsson and J. Malmquist, “1.3 μm InGaAs vertical-cavity surface-emitting lasers with mode filter for single mode operation,” Appl. Phys. Lett., vol.85, pp. 4851-4853, 2004.
    [18] P. Sundgren, J. Berggren, P. Goldman, and M. Hammar, “Highly strained InGaAs/GaAs multiple quantum-wells for laser applications in the 1200-1300 nm wavelength regime,” Appl. Phys. Lett., vol. 87, 071104, 2005.
    [19] J. A. Van Vechten, and T. K. Bergstresser, “Electronic Structure of Semiconductor Alloys,” Phys. Rev. B, vol. 1, pp.3351-3358, 1970.
    [20] L. G. Ferreira, S. W. Wei, and A. Zunger, “First-principles calculation of alloy phase diagrams: The renormalized-interaction approach,” Phys. Rev. B, vol. 40 pp. 3197-3231, 1989.
    [21] S. R. Johnson, C. Z. Guo, S. Chaparro, Y. G. Sadofyev, J. Wang, Y. Cao, N. Samal, J. Xu, S. Q. Yu, D. Ding, Y.-H. Zhang, “GaAsSb/GaAs band alignment evaluation for long-wave photonic applications,” J. Cryst. Growth, vol. 251, pp. 521-525, 2003.
    [22] M. Yamada, T. Anan, K. Tokutome, A. Kamei, K. Nishi and S. Sugou, “Low-threshold operation of 1.3-μm GaAsSb quantum-well lasers directly grown on GaAs substrate”, IEEE Photon. Technol. Lett., vol. 12, pp. 774-776, 2000.
    [23] T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei and S. Sugou, “Continuous-wave operation of 1.3-μm GaAsSb/GaAs VCSELs”, Electron. Lett., vol.37, pp. 566-567, 2001.
    References-Chapter2
    [1] G.B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory and Practice”, 2nd Edition, Academic Press, San Diego, 1999.
    References-Chapter3
    [1] T. Anan, K. Nishi, S. Sugou, M. Yamada, K. Tokutome and A. Gomyo,“GaAsSb: A novel material for 1.3-um VCSELs”, Electron. Lett., vol. 34, no. 22, pp. 2127-2129, 1998
    [2] T. Anan, M. Yamada, K. Tokutome, S. Sugou, K. Nishi and A. Kamei, “Room-temperature pulsed operation of GaAsSb GaAs vertical-cavity surface-emitting lasers”, Electron. Lett., vol. 35, no. 11, pp. 903-904, 1999
    [3] M. Yamada, T. Anan, K. Tokutome, A. Kamei, K. Nishi and S. Sugou, “Low-threshold operation of 1.3-um GaAsSb quantum-well lasers directly grown on GaAs substrates”, IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 774-776, 2000
    [4] T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei and S. Sugou, “Continuous-wave operation of 1.30um GaAsSb/GaAs VCSELs”, Electron. Lett., vol. 37, no. 9, pp. 566-567, 2001
    [5] P. W. Liu, M. H. Lee, H. H. Lin and J. R. Chen, “Low-threshold current GaAsSb/GaAs quantum well lasers grown by solid source molecular beam epitaxy”, Electron. Lett., vol. 38, no. 22, pp. 1354-1355, 2002
    [6] O. Blum and J. F. Klem, “Characteristics of GaAsSb Single-Quantum-Well-Lasers Emitting Near 1.3-um”, IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 771-773, 2000
    [7] S. W. Ryu and P. D. Dapkus, “Low threshold current density GaAsSb quantum well (QW) lasers grown by metal organic chemical vapour deposition on GaAs substrates”, Electron. Lett., vol. 36, no. 16, pp. 1387-1388, 2000
    [8] Landolt-Bernstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Volume 22, edited by O. Medelung Springer-Velag, Berlin, 1982.
    References- Chapter4
    [1] M. S. Noh, J. H. Ryou, R. D. Dupuisa, Y.-L. Chang, R. H. Weissman, “Band lineup of pseudomorphic GaAs1−xSbx QW structures with GaAs, GaAsP, and InGaP barriers grown by MOCVD,” JOURNAL OF APPLIED PHYSICS 100, 093703, 2006
    [2] M. S. Noh, R. D. Dupuisa, D. P. Bour, G. Walter, N. Holonyak, Jr, “Long-wavelength strain-compensated GaAsSb QW heterostructures laser grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 83, No. 13, 29 September 2003
    [3] Z. B. Chen, S. R. Johnson, C. Navarro, S. Chaparro, J. Xu, N. Samal, J. Wang, Y. Cao, S. Yu, Y. -H.Zhang, “Strain compensated GaAsP/GaAsSb/GaAs 1.3 μm lasers grown on GaAs using MBE,” TUESDAY AFTERNOON / CLEO 2001 / 209
    References-Chapter5
    [1] K.Kadoiwa*, T.Motoda, T.Nishimura, S.Arimoto, H. Watanabe, T.Kamizato, K-Mizuguchi and T.Murotani, “The Multiple Quantum Barrier Structures and Their Application to the High Power Visible Laser Diode with the Strained InGaP Active Layer Grown by MOCVD”, Japn. J. Appl. Phys. 29, 1990.
    References-Chapter6
    [1] T. Anan, K. Nishi, S. Sugou, M. Yamada, K. Tokutome and A. Gomyo, “GaAsSb: A novel material for 1.3um VCSELs”, Electron. Lett., vol. 34, no. 22, pp. 2127-2129, 1998.
    [2] T. Anan, M. Yamada, K. Tokutome, S. Sugou, K. Nishi and A. Kamei, “Room-temperature pulsed operation of GaAsSb GaAs vertical-cavity surface-emitting lasers”, Electron. Lett., vol. 35, no. 11, pp. 903-904, 1999.
    [3] F. Quochi, J. E. Cunningham, M. Dinu and J. Shah, “Room temperature operation of GaAsSb/GaAs quantum well VCSELs at 1.29um”, Electron. Lett., vol. 36, no. 25, pp. 2075-2076, 2000
    [4] T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei and S. Sugou, “Continuous-wave operation of 1.30um GaAsSb/GaAs VCSELs”, Electron. Lett., vol. 37, no. 9, pp. 566-567, 2001.
    [5] F. Quochi, D. C. Kilper, J. E. Cunningham, M. Dinu and J. Shah, “Continuous-wave operation of a 1.3-um GaAsSb-GaAs quantum-well vertical-cavity surface-emitting laser at room temperature”, IEEE Photon. Technol. Lett., vol. 13, no. 9, pp. 921-923, 2001.
    [6] P. W. Liu, M. H. Lee, H. H. Lin and J. R. Chen, “Low-threshold current GaAsSb/GaAs quantum well lasers grown by solid source molecular beam epitaxy”, Electron. Lett., vol. 38, no. 22, pp. 1354-1355, 2002
    [7] P. Dowd, S. R. Johnson, S. A. Feld, M. Adamcyk, S. A. Chaparro, J. Joseph, K. Hilgers, M. P. Horning, K. Shiralagi and Y. H. Zhang, “Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communications Applications”, Electron. Lett., vol. 39, no. 13, pp. 987-988, 2003.

    下載圖示 校內:2010-06-30公開
    校外:2010-06-30公開
    QR CODE