簡易檢索 / 詳目顯示

研究生: 謝叔翰
Hsieh, Shu-Han
論文名稱: 添加石墨稀於銅摻雜氧化鋅並應用於光觸媒
Cu-doped ZnO with the addition of graphene for use as photocatalyst
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 91
中文關鍵詞: 氧化鋅石墨稀光催化
外文關鍵詞: photocatalyst, ZnO, nanocomposite, graphene
相關次數: 點閱:103下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗透過對氧化鋅光觸媒的改質,來提升光催化降解汙染物的能力,藉由摻雜銅進入氧化鋅晶格的方式改變氧化鋅的能帶間隙以及光吸收能力,同時也藉由添加石墨稀並附著於氧化鋅表面去改善電子電洞的再結合速率。本實驗使用微波水熱法製備含有石墨稀的銅摻雜氧化鋅粉末,使用的前驅物包含醋酸鋅、醋酸銅、以及實驗室自製的氧化石墨稀。藉由調整醋酸鋅的濃度和水熱法時的溫度及時間來找到降解效果最好的純氧化鋅,再使用該參數來製備銅摻雜氧化鋅及含石墨稀之銅摻雜氧化鋅,然後分別比較銅摻雜及石墨稀添加的濃度對光催化之影響。
    實驗使用X射線繞射儀和掃描式電子顯微鏡去分析其晶體結構和表面形貌,使用表面吸附儀測量改質的氧化鋅比表面積,表面化學鍵結分析確認是否具有銅摻雜進入氧化鋅晶格以及氧化石墨稀還原程度,光學性質分析方面,使用可見光/紫外光光譜儀量測改質的氧化鋅的光吸收能力,使用光激發光分析電子電洞再結合速率。最後透過使用可見光或紫外光分解亞甲基藍,來測試改質後氧化鋅的光催化分解汙染物之能力。

    We report a novel Cu-doped ZnO/RGO nanocomposite photocatalyst that exist enhanced efficiency. Nanostructured Cu-doped ZnO/RGO was synthesized in one step by using a hydrothermal method. The hydrothermal bath consisted of zinc acetate dehydrate as zinc precursor, sodium hydroxide, distilled water, copper acetate dehydrate for copper precursor and with or without the addition of GO. The material characteristics of the obtained nanocomposite samples were characterized using X-ray diffraction, Scanning-electron microscopy, Brunauer–Emmett–Teller, X-ray photoelectron spectroscopy, UV-visible spectroscopy, Raman spectroscopy and Photoluminescence. The photocatalytic efficiency was evaluated through the degradation of methylene blue under UV and visible light. Effect of materials characteristics on the photocatalyst behavior is addressed and discussed.

    摘要 II Abstract III Extend Abstract IV 致謝 X 目錄 XI 圖目錄 XIII 表目錄 XVI 第一章 緒論 1 1-1前言 1 1-2 研究背景 3 1-2-1 光觸媒簡介 3 1-2-2 光催化簡介 4 1-3 研究動機 6 第二章 理論背景及文獻回顧 9 2-1 氧化鋅光觸媒 9 2-1-1 氧化鋅結構 9 2-1-2 氧化鋅光學性質 11 2-1-3 氧化鋅之光催化原理及機制 13 2-2 氧化鋅製備方法 17 2-2-1 奈米氧化鋅粒子製備方法 17 2-2-2 微波水熱法及長晶原理 19 2-3 氧化鋅的改質 21 2-3-1 摻雜金屬元素 21 2-3-2 摻雜非金屬元素 23 2-3-3 複合式半導體 25 2-3-4 表面敏化及表面改質 27 第三章 實驗設備與方法 30 3-1 實驗內容與研究項目 30 3-2實驗步驟 32 3-2-1 藥品與材料 32 3-2-2 實驗步驟 33 3-2-3光催化實驗 37 3-3分析儀器介紹 39 第四章 結果與討論 45 4-1 自製氧化鋅粉末特性分析 45 4-1-1 氧化鋅晶體結構分析 45 4-1-2 氧化鋅表面形貌分析 46 4-1-3 氧化鋅光催化測試 49 4-2 自製銅摻雜氧化鋅粉末特性分析 51 4-2-1 物理特性分析 51 4-2-2 光學性質分析 59 4-2-3 光催化測試 61 4-3自製含石墨稀之銅摻雜氧化鋅粉末特性分析 65 4-3-1 物理特性分析 65 4-3-2 光學性質分析 72 4-3-3 光催化測試 80 第五章 結論 84 第六章 未來展望 85 第七章 參考文獻 86

    1. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972(238): p. 37-8.
    2. Frank, S.N. and A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. Journal of the American Chemical Society, 1977. 99(1): p. 303-304.
    3. Kudo, A., H. Kato, and I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters, 2004. 33(12): p. 1534-1539.
    4. Quintana, M., et al., Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. The Journal of Physical Chemistry C, 2007. 111(2): p. 1035-1041.
    5. Khodja, A.A., et al., Photocatalytic degradation of 2-phenylphenol on TiO 2 and ZnO in aqueous suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 2001. 141(2): p. 231-239.
    6. Biernat, K., A. Malinowski, and M. Gnat, The Possibility of Future Biofuels Production Using Waste Carbon Dioxide and Solar Energy. 2013: INTECH Open Access Publisher.
    7. Baruah, S. and J. Dutta, Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 2009. 10(1): p. 013001.
    8. Greenwood, N.N. and A. Earnshaw, Chemistry of the Elements. 2012: Elsevier.
    9. Özgür, Ü., et al., A comprehensive review of ZnO materials and devices. Journal of applied physics, 2005. 98(4): p. 041301.
    10. Fan, Z. and J.G. Lu, Zinc oxide nanostructures: synthesis and properties. Journal of nanoscience and nanotechnology, 2005. 5(10): p. 1561-1573.
    11. Xu, M., et al., Effect of doping with Co and/or Cu on electronic structure and optical properties of ZnO. Journal of Applied Physics, 2009. 105(4): p. 043708.
    12. van Dijken, A., et al., The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. The Journal of Physical Chemistry B, 2000. 104(8): p. 1715-1723.
    13. Vanheusden, K., et al., Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 1996. 79(10): p. 7983-7990.
    14. Lin, B., Z. Fu, and Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physics Letters, 2001. 79(7): p. 943-945.
    15. Grätzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344.
    16. Kale, R., et al., Synthesis of stoichiometric flowerlike ZnO nanorods with hundred per cent morphological yield. Solid state communications, 2007. 142(5): p. 302-305.
    17. Linsebigler, A.L., G. Lu, and J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 1995. 95(3): p. 735-758.
    18. Serpone, N., et al., Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 1995. 85(3): p. 247-255.
    19. Yao, B., Y. Chan, and N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation. Applied Physics Letters, 2002. 81(4): p. 757-759.
    20. Chiou, W.-T., W.-Y. Wu, and J.-M. Ting, Growth of single crystal ZnO nanowires using sputter deposition. Diamond and Related Materials, 2003. 12(10): p. 1841-1844.
    21. Wagner, R. and W. Ellis, Vapor‐liquid‐solid mechanism of single crystal growth. Applied Physics Letters, 1964: p. 89-90.
    22. Yuan, H. and Y. Zhang, Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD. Journal of crystal growth, 2004. 263(1): p. 119-124.
    23. Wahab, R., et al., Low temperature synthesis and characterization of rosette-like nanostructures of ZnO using solution process. Solid State Sciences, 2009. 11(2): p. 439-443.
    24. Spanhel, L. and M.A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. Journal of the American Chemical Society, 1991. 113(8): p. 2826-2833.
    25. Agrell, J., et al., Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique. Applied Catalysis A: General, 2001. 211(2): p. 239-250.
    26. Liu, B. and H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 2003. 125(15): p. 4430-4431.
    27. Nicholas, N.J., G.V. Franks, and W.A. Ducker, The mechanism for hydrothermal growth of zinc oxide. CrystEngComm, 2012. 14(4): p. 1232-1240.
    28. Rao, K., et al., Synthesis of inorganic solids using microwaves. Chemistry of Materials, 1999. 11(4): p. 882-895.
    29. Wang, R., et al., The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites. Applied Surface Science, 2004. 227(1): p. 312-317.
    30. Zhang, D. and F. Zeng, Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye. Journal of materials science, 2012. 47(5): p. 2155-2161.
    31. Ferhat, M., A. Zaoui, and R. Ahuja, Magnetism and band gap narrowing in Cu-doped ZnO. Applied Physics Letters, 2009. 94(14): p. 142502.
    32. Wu, C., et al., Solvothermal synthesis of Cu-doped ZnO nanowires with visible light-driven photocatalytic activity. Materials Letters, 2012. 74: p. 236-238.
    33. Mohan, R., K. Krishnamoorthy, and S.-J. Kim, Enhanced photocatalytic activity of Cu-doped ZnO nanorods. Solid State Communications, 2012. 152(5): p. 375-380.
    34. Huang, D., et al., Magnetism and clustering in Cu doped ZnO. Applied Physics Letters, 2008. 92(18): p. 182509-182509.
    35. Li, D. and H. Haneda, Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition. Journal of photochemistry and photobiology A: Chemistry, 2003. 155(1): p. 171-178.
    36. Rehman, S., et al., Strategies of making TiO 2 and ZnO visible light active. Journal of Hazardous Materials, 2009. 170(2): p. 560-569.
    37. Zheng, Y., et al., Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorganic chemistry, 2007. 46(17): p. 6980-6986.
    38. Bard, A.J. and M.S. Wrighton, Thermodynamic Potential for the Anodic Dissolution of n‐Type Semiconductors A Crucial Factor Controlling Durability and Efficiency in Photoelectrochemical Cells and an Important Criterion in the Selection of New Electrode/Electrolyte Systems. Journal of the Electrochemical Society, 1977. 124(11): p. 1706-1710.
    39. Yang, G.C. and S.-W. Chan, Photocatalytic reduction of chromium (VI) in aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation. Journal of Nanoparticle Research, 2009. 11(1): p. 221-230.
    40. Subramanian, V., E.E. Wolf, and P.V. Kamat, Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration. The Journal of Physical Chemistry B, 2003. 107(30): p. 7479-7485.
    41. Xu, T., et al., Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Applied Catalysis B: Environmental, 2011. 101(3): p. 382-387.
    42. Du, J., et al., Hierarchically ordered macro− mesoporous TiO2− graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS nano, 2010. 5(1): p. 590-596.
    43. Li, B. and H. Cao, ZnO@ graphene composite with enhanced performance for the removal of dye from water. journal of materials chemistry, 2011. 21(10): p. 3346-3349.
    44. Cho, Y., et al., Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental science & technology, 2001. 35(5): p. 966-970.
    45. Georgekutty, R., M.K. Seery, and S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. The Journal of Physical Chemistry C, 2008. 112(35): p. 13563-13570.
    46. Liu, J., et al., Reduced graphene oxide as capturer of dyes and electrons during photocatalysis: surface wrapping and capture promoted efficiency. Physical Chemistry Chemical Physics, 2011. 13(29): p. 13216-13221.
    47. Wu, T.-T. and J.-M. Ting, Preparation and characteristics of graphene oxide and its thin films. Surface and Coatings Technology, 2013. 231: p. 487-491.
    48. Strohmeier, B.R. and D.M. Hercules, Surface spectroscopic characterization of the interaction between zinc ions and γ-alumina. Journal of catalysis, 1984. 86(2): p. 266-279.
    49. Chen, L.-C., et al., Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. Journal of Photochemistry and Photobiology A: Chemistry, 2008. 199(2): p. 170-178.
    50. Ma, H., et al., Synthesis, characterization and photocatalytic activity of Cu-doped Zn/ZnO photocatalyst with carbon modification. Journal of Materials Chemistry, 2012. 22(45): p. 23780-23788.
    51. Jolley, J.G., et al., Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide. Applied surface science, 1989. 37(4): p. 469-480.
    52. Hussain, Z., et al., X-ray photoelectron and auger spectroscopy study of copper-sodium-germanate glasses. Journal of non-crystalline solids, 1989. 110(1): p. 44-52.
    53. Iijima, Y., N. Niimura, and K. Hiraoka, Prevention of the Reduction of CuO during X‐ray Photoelectron Spectroscopy Analysis. Surface and interface analysis, 1996. 24(3): p. 193-197.
    54. Tobin, J.P., W. Hirschwald, and J. Cunningham, XPS and XAES studies of transient enhancement of Cu 1 at CuO surfaces during vacuum outgassing. Applications of surface science, 1983. 16(3): p. 441-452.
    55. Klein, J.C., et al., Decomposition of copper compounds in X-ray photoelectron spectrometers. Applied spectroscopy, 1984. 38(5): p. 729-734.
    56. Bai, H., Z. Liu, and D.D. Sun, Hierarchical ZnO/Cu “corn-like” materials with high photodegradation and antibacterial capability under visible light. Physical Chemistry Chemical Physics, 2011. 13(13): p. 6205-6210.
    57. Zemlyanov, D., et al., XPS observation of OH groups incorporated in an Ag (111) electrode. Surface science, 1998. 418(2): p. 441-456.
    58. Xu, F., et al., Enhanced photocatalytic activity of hierarchical ZnO nanoplate-nanowire architecture as environmentally safe and facilely recyclable photocatalyst. Nanoscale, 2011. 3(12): p. 5020-5025.
    59. Chen, L., et al., Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films. Applied Surface Science, 2013. 273: p. 82-88.
    60. Ke, C.-R. and J.-M. Ting, Anatase TiO 2 beads having ultra-fast electron diffusion rates for use in low temperature flexible dye-sensitized solar cells. Journal of Power Sources, 2012. 208: p. 316-321.
    61. Ke, C.-R., L.-C. Chen, and J.-M. Ting, Photoanodes consisting of mesoporous anatase TiO2 beads with various sizes for high-efficiency flexible dye-sensitized solar cells. The Journal of Physical Chemistry C, 2012. 116(3): p. 2600-2607.
    62. Saravanan, R., et al., Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Materials Science and Engineering: C, 2013. 33(1): p. 91-98.
    63. Anandan, S., N. Ohashi, and M. Miyauchi, ZnO-based visible-light photocatalyst: Band-gap engineering and multi-electron reduction by co-catalyst. Applied Catalysis B: Environmental, 2010. 100(3): p. 502-509.
    64. Luo, D., et al., Evaluation criteria for reduced graphene oxide. The Journal of Physical Chemistry C, 2011. 115(23): p. 11327-11335.
    65. Wu, W.Y., T.W. Shih, and J.M. Ting, Hydrothermally synthesized TiO2 nanopowders and their use as photoanodes in dye‐sensitized solar cells. International Journal of Energy Research, 2013. 37(8): p. 964-972.
    66. Merel, P., et al., Direct evaluation of the sp 3 content in diamond-like-carbon films by XPS. Applied Surface Science, 1998. 136(1): p. 105-110.
    67. Akhavan, O., Graphene nanomesh by ZnO nanorod photocatalysts. ACS nano, 2010. 4(7): p. 4174-4180.
    68. Das, A., et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature nanotechnology, 2008. 3(4): p. 210-215.
    69. Zhu, M., P. Chen, and M. Liu, Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS nano, 2011. 5(6): p. 4529-4536.
    70. Liu, X., et al., UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr (VI). Chemical Engineering Journal, 2012. 183: p. 238-243.
    71. Wang, Y., et al., Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing. Journal of Crystal Growth, 2003. 259(4): p. 335-342.
    72. Chandrinou, C., et al., PL study of oxygen defect formation in ZnO nanorods. Microelectronics Journal, 2009. 40(2): p. 296-298.
    73. Yang, N., et al., Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. Acs Nano, 2010. 4(2): p. 887-894.
    74. Chien, C.T., et al., Tunable photoluminescence from graphene oxide. Angewandte Chemie International Edition, 2012. 51(27): p. 6662-6666.

    下載圖示 校內:2020-08-27公開
    校外:2020-08-27公開
    QR CODE