簡易檢索 / 詳目顯示

研究生: 阮文容
Nguyen, Van Dung
論文名稱: 高熵氧化物在金屬氧化物半導體場效電晶體和薄膜電晶體中的應用探索
Exploration of high-entropy oxides for Applications in Metal-oxide-semiconductor field-effect transistors and Thin film transistors
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 124
中文關鍵詞: 高熵氧化物金屬-氧化物-半導體場效電晶體薄膜電晶體組合式濺鍍介電特性閘極偏壓應力紫外線感測
外文關鍵詞: high entropy oxide, metal-oxide-semiconductor field-effect transistors, thin-film transistor, combinatorial sputtering, dielectric properties, gate bias stress, ultraviolet sensing
相關次數: 點閱:11下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高熵氧化物(HEOs)因其優異的熱穩定性、高熵效應及遲滯擴散效應而受到廣泛關注,這些特性使得高熵氧化物在作為電介質層以實現新型電晶體方面具有極大潛力。在本研究中,我們探討高熵氧化物在金屬-氧化物-半導體場效電晶體(MOSFETs)與薄膜電晶體(TFTs)中的應用。我們首先透過組合式濺鍍法合成了 Ba(Hf,Ta,Mo,Zr,Ti)O₃ 薄膜。使用掃描式X光繞射 (XRD) 與掃描式X光螢光 (XRF) 技術,對樣品的結晶性與元素組成進行有效分析。總共製作了100個以Ba(Hf,Ta,Mo,Zr,Ti)O3介電薄膜為基礎的MOS元件,以推導出薄膜庫的介電性。性能優異的Ba(Hf,Ta,Mo,Zr,Ti)O3介電薄膜表現出高介電常數(k),範圍為325至374,並具有低介電損耗(0.01至0.08),等效氧化層厚度 (EOT) 約為0.8至0.94奈米(在1 kHz下測得)。此外,將Ba(Hf,Ta,Mo,Zr,Ti)O3薄膜進行900 oC的快速熱退火 (RTA) 處理,以研究其熱穩定性。經RTA處理後的樣品展現出良好的熱穩定性與相對低的漏電流密度,在1V電壓下約為2.8 ×10^-9 A/cm^2。RTA處理後的MOSFET表現出優異的電性,包括次臨界擺幅(SS)為0.062 V/dec、閾值電壓(VT)為0.03 V、飽和場效遷移率為138.4 cm^2/V·s,以及開關電流比為8×10^6。這些結果顯示出 Ba(Hf,Ta,Mo,Zr,Ti)O₃ 在次世代電子元件中具有極大的應用潛力。其次,將氮摻雜至 Ba(Hf,Ta,Mo,Zr,Ti)O₃ 薄膜中,以進一步提升元件的電介質與電性表現。氮摻雜之 Ba(Hf,Ta,Mo,Zr,Ti)O₃ 電介質係透過組合式濺鍍法,製備於氧化銦錫(ITO)基板上。製作了基於氮摻雜Ba(Hf,Ta,Mo,Zr,Ti)O3介電薄膜的 MIM 裝置,以推導薄膜的介電性能。該N-Ba(Hf,Ta,Mo,Zr,Ti)O3 薄膜庫在 1 kHz 時表現出 262至322 範圍內的高 k 值和 0.01至0.3 的低介電損耗。所製得的TFT元件展現出優異的電性表現,包括次臨界擺幅為0.062 V/dec、閾值電壓 (VT) 為0.02 V、飽和場效遷移率為60 cm^2/V·s,以及開關電流比達到108。該TFT元件在各種閘極偏壓應力條件下皆展現出穩定性,並於放置五個月後仍維持良好的長期穩定性。此外,以此TFT為基礎的紫外光 (UV) 偵測器也展現出優異的感測表現,包含約2 × 10^6的靈敏度與約1171.9 A/W的響應度。

    High entropy oxides (HEOs) have attracted considerable interest because of their excellent thermal stability, high entropy and sluggish diffusion effects, which make HEOs highly promising for dielectric layer to realize novel transistors. In this study, we explore the high entropy oxides for applications in metal-oxide-semiconductor field-effect transistors (MOSFETs) and thin-film transistors (TFTs). We first synthesize the Ba(Hf,Ta,Mo,Zr,Ti)O3 thin films through combinatorial sputtering. Scanning X-ray micro diffractometry (XRD) and scanning X-ray fluorescence (XRF) were used to efficiently analyze the crystallinity and elemental composition in the samples. A total of 100 Ba(Hf,Ta,Mo,Zr,Ti)O3 dielectric films-based MOS devices were fabricated to deduce the dielectric properties of the film library. The favorable Ba(Hf,Ta,Mo,Zr,Ti)O3 dielectric films exhibited high dielectric constant (k) in the range of 325-374 and low dielectric loss of 0.01-0.08 values with an equivalent oxide thickness (EOT) of approximately 0.8-0.94 nm at 1 kHz. The Ba(Hf,Ta,Mo,Zr,Ti)O3 film was subjected to the RTA at 900 oC to investigate the thermal stability. The sample after RTA exhibited favorable thermal stability and reasonably low leakage current density of approximately 2.8 ×10^-9 A/cm^2 at 1V. The excellent electrical performance, including a subthreshold swing of 0.062 V·dec^-1, a threshold voltage (VT) of 0.03 V, a saturated field-effect mobility of 138.4 cm^2·V^-1·s^-1, and an on/off current ratio of 8×10^6 was achieved for the resulting MOSFET after RTA. These results indicate the great potential of Ba(Hf,Ta,Mo,Zr,Ti)O3 in next-generation electronic devices. Secondly, Nitrogen was doped into the Ba(Hf,Ta,Mo,Zr,Ti)O3 thin films to further enhance the dielectric and electrical performances of the devices. The N-doped Ba(Hf,Ta,Mo,Zr,Ti)O3 dielectric was fabricated on indium tin oxide (ITO) substrate through combinatorial sputtering. The N-doped Ba(Hf,Ta,Mo,Zr,Ti)O3 dielectric thin films based MIM devices were fabricated to deduce the dielectric properties of the film libraries. The N-Ba(Hf,Ta,Mo,Zr,Ti)O3 film library exhibited high-k values in the range of 262-322 and low dielectric loss of 0.01-0.3 at 1 kHz. The excellent electrical performance, including a subthreshold swing of 0.062 V·dec^-1, a threshold voltage (VT) of 0.02 V, a saturated field-effect mobility of 60 cm^2·V^-1·s^-1, and an on/off current ratio of 10^8 was achieved for the resulting TFT. The resulting ZnSnO channel-based TFTs also exhibited a great stable performance under various gate bias stress conditions and remarkable long-term stability after being maintained for five months. Furthermore, the excellent Ultraviolet (UV)-sensing performance, including the sensitivity of approximately 2 × 10^6 and responsivity of approximately 1171.9 A/W, was obtained for the TFT-based UV detector.

    摘要 I Abstract II 致謝 IV Contents V Figure Contents IX Table Contents XVI Chapter 1 Introduction 1 1.1 Moore’s Law 1 1.2 Metal-oxide-semiconductor field-effect transistors (MOSFETs) 1 1.2.1 MOSFETs structure 1 1.2.2 Operation principle of MOSFETs 3 1.3 Thin film transistors (TFTs) 4 1.3.1 TFTs structure 4 1.3.2 Operation principle of TFTs 6 1.3.3 Amorphous oxide semiconductors (AOSs) based TFTs 7 1.4 Dielectric materials in MOSFETs and TFTs 8 1.4.1 Conventional SiO2 gate dielectric 8 1.4.2 High-k gate materials 9 1.4.3 High entropy oxide (HEO) dielectric 12 1.5 High entropy oxide (HEO) 13 1.5.1 Definition of high-entropy oxide 13 1.5.2 Four effects of HEOs 14 1.5.3 Application of HEO 15 1.6 Study of dielectric properties of HEOs 24 1.6.1 Metal oxide semiconductor (MOS) capacitor 24 1.6.2 Metal-Insulator-Metal (MIM) capacitor 30 1.7 Study of the electrical performance of HEO dielectric-transistors 33 1.8 Motivations 35 Chapter 2 Experimental methods 37 2.1 Material deposition methods 37 2.2 The thin film fabrication 37 2.2.1 Substrate cleaning 37 2.2.2 Deposition of Ba(Hf,Ta,Mo,Zr,Ti)O3 film libraries 37 2.2.3 Deposition of N-doped Ba(Hf,Ta,Mo,Zr,Ti)O3 film libraries 38 2.3 Device fabrication 39 2.3.1 Ba(Hf,Ta,Mo,Zr,Ti)O3-based MOS and N-doped Ba(Hf,Ta,Mo,Zr,Ti)O3-based MIM stack 39 2.3.2 HEO-based MOSFETs 40 2.3.3 N-doped Ba(Hf,Ta,Mo,Zr,Ti)O3 film-based TFTs 41 2.3.4 Forming gas annealing (FGA) 42 2.3.5 Rapid thermal annealing (RTA) 43 2.4 Characterization 44 2.4.1 X-ray diffraction (XRD) 44 2.4.2 Scanning X-ray fluorescence spectrometry (XRF) 44 2.4.3 X-ray Photoelectron Spectroscopy (XPS) 45 2.4.4 Focused ion beam (FIB) 46 2.4.5 Transmission Electron Microscopy (TEM) 47 2.4.6 Electrical probe station 47 Chapter 3 Results and discussion 51 3.1 Ba(Hf,Ta,Mo,Zr,Ti)O3 (HEO) film libraries for advanced MOS stack and MOSFETs. 51 3.1.1 XRD analysis 51 3.1.2 XRF analysis 52 3.1.3 XPS analysis 52 3.1.4 I-V and C-V characteristics of Ba(Hf,Ta,Mo,Zr,Ti)O3 -based MOS stack 54 3.1.5 TEM analysis 57 3.1.6 Dielectric constant and dielectric loss 58 3.1.7 Thermal stability 60 3.1.8 Energy band diagram 61 3.1.9 Electrical properties of Ba(Hf,Ta,Mo,Zr,Ti)O3-based MOSFETs 62 3.1.10 Gate bias stress instability (GBSI) of Ba(Hf,Ta,Mo,Zr,Ti)O3-based MOSFETs 65 3.2 N-doped Ba(Hf,Ta,Mo,Zr,Ti)O3 film libraries 68 3.2.1 XRD analysis 68 3.2.2 XRF analysis 69 3.2.3 XPS analysis 69 3.2.4 I-V characteristics of N-doped Ba(Hf,Ta,Mo,Zr,Ti)O3 film-based MIM gate stacks 72 3.2.5 TEM 76 3.2.6 Dielectric constant and dielectric loss 77 3.2.7 Energy band diagram 79 3.2.8 Electrical performance of TFTs 81 3.2.9 GBSI of the device 84 3.2.10 Kinetics of charge trapping 87 3.2.11 UV photodetector 90 3.2.12 The electrical performance of the flexible TFT 92 Chapter 4 Conclusions 94 Chapter 5 References 96

    [1]. F. Schwierz and J. J. Liou. Status and future prospects of CMOS scaling and Moore's law-a personal perspective. in 2020 IEEE Latin America electron devices conference (LAEDC). 2020. IEEE.
    [2]. J. Shalf, "The future of computing beyond Moore’s Law," Philosophical Transactions A, 378(2166), 20190061, (2020).
    [3]. Fortunato, P. Barquinha, and R. Martins, "Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances," Advanced materials, 24(22), 2945–2986, (2012).
    [4]. D. A. Neamen, Semiconductor Physics And Devices. (2011): McGraw-Hill Education.
    [5]. S. M. Sze and K. K. Ng, Physics of semiconductor devices. Third ed. (2006): John wiley & sons.
    [6]. L.C. Liu, Transistor characteristic and electrical stability of zinc tin oxide thin film transistors by solution process, National Cheng Kung Univeristy (Taiwan), (2015).
    [7]. K. T. Kang, M. H. Lim, H. G. Kim, l. D. Kim, and J. M. Hong, "High field-effect mobility ZnO thin-film transistors with Mg-dope Ba0.6Sr0.4TiO3 gate insulator on plastic substrates," Applied Physics Letters, 90, 043502, (2007).
    [8]. M. Esro, G. Vourlias, C. Somerton, W.I. Milne, and G. Adamopoulos, "High-mobility ZnO thin film transistors based on solution-processed hafnium oxide gate dielectrics," Advanced Functional Materials, 25(1) 134–141, (2015).
    [9]. H. Xu, X. Ding, J. Qi, X. Yang, and J. Zhang, "A Study on Solution-Processed Y2O3 Films Modified by Atomic Layer Deposition Al2O3 as Dielectrics in ZnO Thin Film Transistor," Coatings, 11(8), 969, (2021).
    [10]. X. Zou, G. Fang, L. Yuan, X. Tong, and X. Zhao, "A comparative study of amorphous InGaZnO thin-film transistors with HfOxNy and HfO2 gate dielectrics," Semiconductor Science and Technology, 25(5), 055006, (2010).
    [11]. J. Song, L. Qian, C. Leung, and P. Lai, "Improved electrical characteristics of amorphous InGaZnO thin-film transistor with HfLaO gate dielectric by nitrogen incorporation," Applied Physics Express, 8, 066503, (2015).
    [12]. R. Yao, Z. Zheng, M. Xiong, X. Zhang, X. Li, H. Ning, Z. Fang, W. Xie, X. Lu, and J. Peng, "Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors," Applied Physics Letters, 112, 103503, (2018).
    [13]. R.N. Bukke, C. Avis, M.N. Naik, and J. Jang, "Remarkable increase in field effect mobility of amorphous IZTO thin-film transistors with purified ZrOx gate insulator," IEEE Electron Device Letters, 39(3), 371–374, (2018).
    [14]. Z. Chen, L. Lan, and J. Peng, "Approaching subthreshold-swing limit for thin-film transistors by using a giant-dielectric-constant gate dielectric," RSC Advances, 9(46), 27117–27124, (2019).
    [15]. W.H. Wang, X.H. Pan, W. Dai, Y.Y. Zeng, and Z.Z. Ye, "Ultrahigh sensitivity in the amorphous ZnSnO UV photodetector," RSC Advances, 6, 32715–32720, (2016).
    [16]. A.T. Oluwabi, A. Katerski, E. Carlos, R. Branquinho, A. Mere, M. Krunks, E. Fortunato, L. Pereira, and I. O. Acik, "Application of ultrasonic sprayed zirconium oxide dielectric in zinc tin oxide-based thin film transistor," Journal of Materials Chemistry C, 8(11), 3730–3739, (2020).
    [17]. J.Q. Zhang, J.G. Lu, Y.D. Lu, S.L. Yue, R.K. Lu, X.F. Li, J.H. Zhang, Z.Z. Ye, "Dependence of device behaviors on oxygen vacancies in ZnSnO thin-film transistors," Applied Physics A, 125(5), 362, (2019).
    [18]. B. Yang, G. He, W. Wang, Y. Zhang, C. Zhang, Y. Xia, and X. Xu, "Diffusion-activated high performance ZnSnO/Yb2O3 thin film transistors and application in low-voltage-operated logic circuits," Journal of Materials Science & Technology, 70, 49–58, (2021).
    [19]. G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-kappa gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, 89(10), 5243–5275, (2001).
    [20]. J. Robertson, "High dielectric constant oxides," European Physical Journal-Applied Physics, 28(3), 265–291, (2004).
    [21]. J. Robertson, and R. M. Wallace, "High-K materials and metal gates for CMOS applications," Materials Science and Engineering: R: Report, 88, 1–41, (2015).
    [22]. S. Mohsenifar, M. H. Shahrokhabadi, and J. M. Anthony, "Gate Stack High-κ Materials for Si-Based MOSFETs Past, Present, and Futures," Microelectronics and Solid State Electronics, 4(1), 12–24, (2015).
    [23]. P. Packan, "Pushing the Limits," Science, 285, 2079−2081, (1999).
    [24]. M. Houssa, L. Pantisano, L. A. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, and M. M. Heyns, "Electrical properties of high-k gate dielectrics: challenges, current issues and possible solutions", Materials Science and Engineering: R: Report, 51(4-6), 37–85, (2006).
    [25]. M. K. Bera, and C. K. Maiti, "Electrical properties of SiO2/TiO2 high-k gate dielectric stack," Materials Science in Semiconductor Processing, 9(6), 909–917, (2006).
    [26]. H. Wong, and H. Iwai, "On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors," Microelectronic Engineering, 83(10), 1867–1904, (2006).
    [27]. J. H. Shim, H. J. Choi, Y. Kim, J. Torgersen, J. An, M. H. Lee, and F. B. Prinz, "Process–property relationship in high-k ALD SrTiO3 and BaTiO3: a review," Journal of Materials Chemistry C, 5(32), 8000–8013, (2017).
    [28]. M. Vehkamäki, T. Hatanpää, T. Hänninen, M. Ritala, and M. Leskelä, "Growth of SrTiO3 and BaTiO3 thin films by atomic layer deposition," Electrochemical and Solid-State Letters, 2(10), 504–506, (1999).
    [29]. M. Vehkama¨ki, T. Hatanpa¨a¨, M. Ritala, M. Leskela¨, S. Va¨yrynen, and E. Rauhala, "Atomic layer deposition of BaTiO3 thin films—effect of barium hydroxide formation," Chemical Vapor Deposition, 13(5), 239–246, (2007).
    [30]. S. Acharya, J. Torgersen, Y. Kim, J. Park, P. Schindler, A. L. Dadlani, M. Winterkorn, S. Xu, S. P. Walch, T. Usui, C. Schildknecht, and F. B. Prinz, "Self-limiting atomic layer deposition of barium oxide and barium titanate thin films using a novel pyrrole-based precursor," Journal of Materials Chemistry C, 4(10), 1945–1952, (2016).
    [31]. J. Robertson, "Band offsets of wide band gap oxides and implications for future electronic devices," Journal of Vacuum Science & Technology B, 18(3), 1785–1791, (2020).
    [32]. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, "Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes," Advanced Engineering Materials, 6(5), 299–303, (2004).
    [33]. W. Yang, S. Ullah, and G. Zheng, "The ultra high electric breakdown strength and superior energy storage properties of (Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3 high entropy ferroelectric thin flms," Journal of Materials Science: Materials in Electronics, 35, 82, (2024).
    [34]. A. Salian, P. Pujar, R.V. Vardhan, H. Cho, S. Kim, and S. Mandal, "Evolution of High Dielectric Permittivity in Low-Temperature Solution Combustion-Processed Phase-Pure High Entropy Oxide (CoMnNiFeCr)O for Thin Film Transistors," ACS Applied Electronic Materials, 5(5), 2608–2623, (2023).
    [35]. Z. Liang, W. Wu, X. Fu, H. Ning, G. Su, H. Wang, T. Qiu, Z. Yang, R. Yao, and J. Peng, "Solution-processed high entropy metal oxides as dielectric layers with high transmittance and performance and application in thin film transistors," Surfaces and Interfaces, 40, 103147, (2013).
    [36]. H. Li, Y. Zhou, Z. Liang, H. Ning, X. Fu, Z. Xu, T. Qiu, W. Xu, R. Yao, and J. Peng "High-Entropy Oxides: Advanced Research on Electrical Properties," Coatings, 11(6), 628, (2021).
    [37]. J. Chen, W. Liu, J. Liu, X. Zhang, M. Yuan, Y. Zhao, J. Yan, M. Hou, J. Yan, M. Kunz, N. Tamura, H. Zhang, and Z. Yin, " Stability and compressibility of cation-doped high-entropy oxide MgCoNiCuZnO5," The Journal of Physical Chemistry C, 123(29), 17735–17744, (2019).
    [38]. D. Chen, X. Zhu, X. Yang, N. Yan, Y. Cui, X. Lei, L. Liu, J. Khaliq, and C. Li, " Areviewonstructure–property relationships in dielectric ceramics using high-entropy compositional strategies," Journal of the American Ceramic Society, 106(11), 6602–6616, (2023).
    [39]. Y.Y. Cheng, L. Zhou, J.X. Liu, Y.F. Tan, and G.J. Zhang, " Grain growth inhibition by sluggish diffusion and Zener pinning in high entropy diboride ceramics," Journal of the American Ceramic Society, 106(8), 4997–5004, (2023).
    [40]. H. Xiang, Y. Xing, F.Z. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li and Y. Zhou, "High-entropy ceramics: Present status, challenges, and a look forward," Journal of Advanced Ceramics, 10, 385–441, (2021).
    [41]. A. Kumar, A. Singh, A. Suhane, "Mechanically alloyed high entropy alloys: existing challenges and opportunities," Journal of Materials Research and Technology, 17, 2431–2456, (2022).
    [42]. J.L. Braun, C.M. Rost, M. Lim, A. Giri, D.H. Olson, G.N. Kotsonis, G. Stan, D.W. Brenner, J.P. Maria, and P.E. Hopkins, "Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides," Advanced Materials, 30(51), e1805004, (2018).
    [43]. C.M. Rost, Z. Rak, D.W. Brenner, J.P. Maria, "Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study," Journal of the American Ceramic Society, 100(6), 2732–2738, (2017).
    [44]. H. Chen, J. Fu, P. Zhang, H. Peng, C.W. Abney, K. Jie, X. Liu, M. Chi, and S. Dai, "Entropy-stabilized metal oxide solid solutions as CO oxida tion catalysts with high-temperature stability," Journal of Materials Chemistry A, 6(24), 11129–11133, (2018).
    [45]. C. Oses, C. Toher and S. Curtarolo, "High-entropy ceramics," Nature Reviews Materials, 5, 295–309, (2020).
    [46]. A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. De Biasi, C. Kübel, T. Brezesinski, S.S. Bhatta charya, and H. Hahn, "High entropy oxides for reversible energy storage," Nature Communications, 9, 3400, (2018).
    [47]. N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, and Y. Cui, "A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance," Journal of Alloys and Compounds, 777, 767–774, (2019)
    [48]. Z. Zhao, H. Xiang, F. Z. Dai, Z. Peng, and Y. Zhou, "(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate," Journal of Materials Science & Technology, 35(11), 2647–2651, (2019).
    [49]. D. Zhang, Y. Yu, X. Feng, Z. Tian, and R. Song, "Thermal barrier coatings with high-entropy oxide as a top coat," Ceramics International, 48(1), 1349–1359, (2022).
    [50]. T. X. Nguyen, Y. C. Liao, C. C. Lin, Y. H. Su, and J. M. Ting, "Advanced High Entropy Perovskite Oxide Electrocatalyst for Oxygen Evolution Reaction," Advanced Funtional Materials, 31(27), 2101632, (2021).
    [51]. Y. Zhang, W. Dai, P. Zhang, T. Lu, and Y. Pan, "In-situ electrochemical tuning of (CoNiMnZnFe)3O3.2 high-entropy oxide for efficient oxygen evolution reactions," Journal of Alloys and Compounds, 868, 159064, (2021).
    [52]. B. Musicó , Q. Wright, T. Z. Ward, A. Grutter, E. Arenholz, D. Gilbert, D. Mandrus, and V. Keppens, "Tunable magnetic ordering through cation selection in entropic spinel oxides," Physical Review Materials, 3, 104416, (2019).
    [53]. A.Q. Mao, H.Z. Xiang, Z.G. Zhang, K. Kuramoto, H. Zhang, and Y.G. Jia, "A new class of spinel high-entropy oxides with controllable magnetic properties," Journal of Magnetism and Magnetic Materials, 497, 165884–165888, (2020).
    [54]. Z.W. Huang, and K.S. Chang, "Spin-coating for fabrication of high-entropy high-k (AlTiVZrHf)Ox films on Si for advanced gate stacks," Ceramics International, 47(16) 22558–22566, (2021).
    [55]. Z. Lou, X. Xu, P. Zhang, L. Gong, Q. Chen, J. Xu, A. Rydosz, and F. Gao, "Microstructure and dielectric properties of high-entropy Sr0.9La0.1MeO3 (Me: Zr, Sn, Ti, Hf, Mn, Nb) perovskite ceramics," Journal of Materials Research and Technology, 21, 850–855, (2022).
    [56]. F. Wei, H. Tu, and J. Du, "Twin-free (1 1 1)-oriented epitaxial Nd2 Hf2O7 thin films on Ge(1 1 1) for high-k dielectrics," Journal of Physics D: Applied Physics, 42(18), 185301, (2009).
    [57]. J. Mu, X. Chou, Z. Ma, J. He and J. Xiong, "High-Performance MIM Capacitors for a Secondary Power Supply Application," Micromachines, 9(2), 69, (2018).
    [58]. S. Mondal, S.J. Shih, F.H. Chen, and T.M. Pan, " Structural and Electrical Characteristics of Lu2O3 Dielectric Embedded MIM Capacitors for Analog IC Applications," IEEE TRANSACTIONS ON ELECTRON DEVICES, 59(6), 1750–1756, (2012).
    [59]. V. D. Nguyen, T. Nagata, and K. S. Chang, "High-throughput methodology for the realization of high-entropy sub-nm equivalent-oxide-thickness high-dielectric-constant Ba(Ti,Zr,Ta,Hf,Mo)O3 film-based metal-oxide-semiconductor-related devices," Materials Today Physics, 37, 101202, (2023).
    [60]. Y. Liang, B. Luo, H. Dong, and D. Wang, "Electronic structure and transport properties of sol-gel-derived high-entropy Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 thin films, " Ceramics International, 47(14), 20196–20200, (2021).
    [61]. X. L. Li, H. B. Lu, M Li, and Z. Mai, "Characteristics of the low electron density surface layer on BaTiO3 thin films," Applied Physics Letter, 92(1), 012902, (2008).
    [62]. K.S. Hong, M.G. Ha, J.S. Bae, J.S. Kim, Y.R. Bae, C.W. Ahn, I.W. Kim, and J.P. Kim, "Structural characteristics and chemical bonding states with temperature in barium titanate nanopowders prepared by using the solvothermal method, " Current Applied Physics, 15(11), 1377–1383, (2015).
    [63]. X. Luo, Y. Li, H. Yang, Y. Liang, K. He, W. Sun, H.H. Lin, S. Yao, X. Lu, L. Wan, and Z. Feng, "Investigation of HfO2 Thin Films on Si by X-ray Photoelectron Spectroscopy, Rutherford Backscattering, Grazing Incidence X-ray Diffraction and Variable Angle Spectroscopic Ellipsometry, " Crystals, 8(6), 248, (2018).
    [64]. B.E. Park, I.K. Oh, J.S. Park, S. Seo, D. Thompson, and H. Kim, "Simultaneous improvement of the dielectric constant and leakage currents of ZrO2 dielectrics by incorporating a highly valent Ta5+ element," Journal of Materials Chemistry C, 6(36), 9794–9801, (2018).
    [65]. M. Matsuoka, S. Isotani, S. Miyake, Y. Setsuhara, K. Ogata, and N. Kuratani, "Effects of ion energy and arrival rate on the composition of zirconium oxide films prepared by ion-beam assisted deposition," Journal of Applied Physics, 80(2), 1177–1181, (1996).
    [66]. Z. Azdad, L. Marot, L. Moser, R. Steiner, and E. Meyer, "Valence band behaviour of zirconium oxide, Photoelectron and Auger spectroscopy study," Scientific Reports, 8, 16251, (2018).
    [67]. R.D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallographica, 32, 751–767, (1976).
    [68]. S.F. Ho, S. Contarini, and J. Rabalais, "Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M= chromium, molybdenum, tungsten, vanadium, niobium and tantalum," Journal of Physical Chemistry, 91(18), 4779–4788, (1987).
    [69]. J. Baltrusaitis, B.M. Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts, and N. Fairley, "Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model, " Applied Surface Science, 326, 151–161, (2015).
    [70]. R.V. Gonçalves, R. Wojcieszak, P.M. Uberman, S.R. Teixeira, and L.M. Rossi, "Insights into the active surface species formed on Ta2O5 nanotubes in the catalytic oxidation of CO," Physical Chemistry Chemical Physics, 16(12), 5755–5762, (2014).
    [71]. B. Bharti, S. Kumar, H.N. Lee, and R. Kumar, "Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment," Scientific Reports, 6, 32355, (2016).
    [72]. Y. Noh, Y. Kim, H. Han, S. Park, W. Yoon, S. Lee, J.G. Kim, Y. Kim, H. Ju Kim, and W.B. Kim, "Heat Treatment–Controlled Morphology Modification of Electrospun Titanium Oxynitride Nanowires for Capacitive Energy Storage and Electrocatalytic Reactions," Energy Technology, 8(6), 2000184, (2020).
    [73]. J. Huang, A. Meng, Z. Zhang, S. Xiao, X. Guo, X. Wu, S. Huang, G. Ma, P. Han, and B. He, "Enhanced Visible-Light-Driven Photoelectrochemical Activity in Nitrogen-Doped TiO2/Boron-Doped Diamond Heterojunction Electrodes," ACS Applied Energy Materials, 5(6), 7144–7156, (2022).
    [74]. J. Yang, S.Y. Hu, Y.R. Fang, S. Hoang, L. Li, W.W. Yang, Z.F. Liang, J. Wu, J.P. Hu, W. Xiao, C.Q. Pan, Z. Lou, J. Ding, and L.Z. Zhang, "Oxygen vacancy promoted O2 activation over perovskite oxide for low-temperature CO oxidation," ACS Catalysis, 9(11), 9751–9763, (2019).
    [75]. A. Tataroğlu, Ş. Altındal, and M.M. Bülbül, "Temperature and frequency dependent electrical and dielectric properties of Al/SiO2/p-Si (MOS) structure," Microelectronic Engineering, 81(1), 140–149, (2005).
    [76]. B. Yao, Z. B. Fang, Y.Y. Zhu, T. Ji, and G. He, "A model for the frequency dispersion of the high-k metal-oxide-semiconductor capacitance in accumulation," Applied Physics Letters, 100(22), 222903, (2012).
    [77]. Y. H. Chen, S. J. Chang, and T. J. Hsueh, "Si-Based MOSFET and Thin Film Transistor Prepared via Hot Wire Implantation Doping Technique," IEEE Electron Device Letters, 26(2), 93–95, (2015).
    [78]. M.F. Chang, P.T. Lee, and A. Chin, "Low-Threshold-Voltage MoN/HfAlO/SiON p-MOSFETs with 0.85-nm EOT," IEEE Electron Device Letters, 30(8), 861–863, (2009).
    [79]. E.D. Ozben, J.M.J. Lopes, A. Nichau, M. Schnee, S. Lenk, A. Besmehn, K.K. Bourdelle, Q.T. Zhao, J. Schubert, and S. Mantl, " Integration of LaLuO3 (k ~ 30) as high-k dielectric on strained and unstrained SOI MOSFETs with a replacement gate process, " IEEE Electron Device Letters, 32(1), 15–17, (2011).
    [80]. C. Henkel, S. Abermann, O. Bethge, G. Pozzovivo, P. Klang, M. Stöger-Pollach, and E. Bertagnolli, "Schottky barrier SOI-MOSFETs with high-k La2O3/ZrO2 gate dielectrics, " Microelectron Engineering, 88(3), 262–267, (2011).
    [81]. D. Lim, J. H. Lee, and C. Choi, "Improved performance of gate-last FDSOI tunnel field-effect-transistors (TFETs) with modulating Al2O3 composition in atomic layer deposited HfAlOx gate dielectrics, " Microelectron Engieering, 178, 266–270, (2017).
    [82]. C. Rossel, B. Mereu, C. Marchiori, D. Caimi, M. Sousa, A. Guiller, H. Siegwart, R. Germann, J.P. Locquet, J. Fompeyrine, and D.J. Webb, " Field-effect transistors with SrHfO3 as gate oxide," Applied Physics Letters, 89(5), 053506, (2006).
    [83]. K. Eisenbeiser, J.M. Finder, Z. Yu, J. Ramdani, J.A. Curless, J.A. Hallmark, R. Droopad, W.J. Ooms, L. Salem, S. Bradshaw, and C.D. Overgaard, "Field effect transistors with SrTiO3 gate dielectric on Si," Applied Physics Letters, 76(10), 1324–1326, (2000).
    [84]. X. Chen, H. Zhao, Y. Xiong, F. Wei, J. Du, Z. Tang, B. Tang, and J. Yan, "Study of Hf-Ti-O Thin Film as High-k Gate Dielectric and Application for ETSOI MOSFETs, " Journal of Electronic Materials, 45(8), 4407–4411, (2016).
    [85]. C.H. Dai, T.C. Chang, A.K. Chu, Y.J. Kuo, W.H. Lo, S.H. Ho, C.E. Chen, J.M. Shih, H.M. Chen, B.S. Dai, G. Xia, O. Cheng, and C.T. Huang, "Impact of static and dynamic stress on threshold voltage instability in high-k/metal gate n-channel metal-oxide-semiconductor field-effect transistors," Applied Physics Letters, 98(9), 092112, (2011).
    [86]. V. D. Nguyen, T. Nagata, H. D. Luong, K. S. Chang, "Electrical and UV-sensing performance of N-doped-Ba(Ti,Zr,Mo,Hf,Ta)O3-dielectric and ZnSnO-channel-based flexible thin-film transistors," Applied Surface Science, 681, 2025, 161568.
    [87]. G. He, J. Liu, H. Chen, Y. Liu, Z. Sun, X Chen, M. Liud, and L. Zhang, "Interface control and modification of band alignment and electrical properties of HfTiO/GaAs gate stacks by nitrogen incorporation," Journal of Materials Chemistry C, 2(27), 5299–5308, (2014).
    [88]. N. Selvakumar, N. T. Manikandanath, A. Biswas, and H. C. Barshilia, "Design and fabrication of highly thermally stable HfMoN/HfON/Al2O3 mtandem absorber for solar thermal power generation applications," Solar Energy Materials and Solar Cells, 102, 86–92, (2012).
    [89]. G. I. Cubillos, E. Romero, and A. U. Perez, "ZrN‑ZrOxNy vs ZrO2‑ZrOxNy coatings deposited via unbalanced DC magnetron sputtering," Scientific Reports, 11, 18926, (2021).
    [90]. B. Jin, P. Chen, H. Chu, D. Zhang, S. S Cui, X. Zhou, and M. Yang, "Tunable built-in electric fields enable high-performance one-dimensional co-axial MoOx/ MoON heterojunction nanotube arrays for thin-film pseudocapacitive charge storage devices," Journal of Materials Chemistry A, 9(22), 13263–13270, (2021)
    [91]. J. C. Chang, F. Eriksson, M. A. Sortica, G. Greczynski, B. Bakhit, Z. Hu, D. Primetzhofer, L. Hultman, J. Birch, and C. L. Hsiao, "Orthorhombic Ta3-xN5-yOy thin films grown by unbalanced magnetron sputtering: The role of oxygen on structure, composition, and optical properties, Surface and Coatings Technology, 406, 126665, (2021).
    [92]. Q. Zhang, C. Ruan, H. Gong, G. Xia, and S. Wang, "Low-temperature and high-performance ZnSnO thin film transistor activated by lightwave irradiation," Ceramics International, 47(14), 20413–20421, (2021).
    [93]. P. Bhat, P. Salunkhe, and D. Kekuda, "DC sputtered ZrO2/Zn(1−x)Sn(x)O thin film transistors and their property evaluation," Applied Physics A, 129, 588, (2023).
    [94]. T.L. Newsom, C. R. Allemang, T.H. Cho, N.P. Dasgupta, and R.L. Peterson, "59.9 mVdec-1 Subthreshold Swing Achieved in Zinc Tin Oxide TFTs With In Situ Atomic Layer Deposited Al2O3 Gate Insulator," IEEE Electron Device Letters, 44, 72–75, (2023).
    [95]. B. Yang, G. He, L. Zhu, C. Zhang, Y. Zhang, Y. Xia, F. Alam, and Z. Sun, "Low-Voltage-Operating Transistors and Logic Circuits Based on a Water-Driven ZrGdOx Dielectric with Low-Cost ZnSnO," ACS Applied Electronic Materials, 1(4), 625−636, (2019).
    [96]. C. X. Huang, J. Li, D. Y. Zhong, C. Y. Zhao, W. Q. Zhu, J. H. Zhang, X. Y. Jiang, and Z. L. Zhang, "Atomic layer deposition deposited high dielectric constant (κ) ZrAlOx gate insulator enabling high performance ZnSnO thin film transistors," Superlattices and Microstructures, 109, 852–859, (2017).
    [97]. S. Jiang, X. Yang, J. Zhang, and X. Li, "Solution-processed stacked TiO2 and Al2O3 dielectric layers for high mobility thin film transistor," AIP Advances, 8(8), 085109, (2018).
    [98]. Q. Zhang, G. Xia, L. Li, W. Xia, H. Gong, and S. Wang, "High-performance Zinc-Tin-Oxide thin film transistors based on environment friendly solution process," Current Applied Physics, 19(2), 174–181, (2019).
    [99]. B. Yang, Y. Liu, S. Lan, L. Dou, C. W. Nan, and Y. H. Lin, "High-entropy design for dielectric materials: Status, challenges, and beyond," Journal of Applied Physics, 133(11), 110904, (2023).
    [100]. X. Xu, G. He, L. Wang, W. Wang, S. Jiang, Z. Fang, "Optimization of electrical performance and stability of fully solution-driven α-InGaZnO thin-film transistors by graphene quantum dots," Journal of Materials Science & Technology, 141, 100–109, (2023).
    [101]. L.C. Liu, J. S. Chen, J. S. Jeng, "Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors," Applied Physics Letters, 105(2), 023509, (2014).
    [102]. J. Kim, S. Bang, S. Lee, S. Shin, J. Park, H. Seo, and H. Jeon, "A study on H2 plasma treatment effect on a-IGZO thin film transistor," Journal of Materials Research, 27(17), 2318–2325, (2012).
    [103]. T. H. Chang, C. J. Chiu, W. Y. Weng, S. J. Chang, T. Y. Tsai, and Z. D. Huang, "High responsivity of amorphous indium gallium zinc oxide phototransistor with Ta2O5 gate dielectric," Applied Physics Letters, 101(26), 261112, (2012).
    [104]. X. Liu, X. Liu, J. Wang, C. Liao, X. Xiao, S. Guo, C. Jiang, Z. Fan, T. Wang, X. Chen, W. Lu, W. Hu, and L. Liao, "Transparent, high-performance thin-film transistors with an InGaZnO/aligned SnO2-nanowire composite and their application in photodetectors," Advanced Materials, 26(43), 7399–7404, (2014).
    [105]. J. Yu, K. Javaid, L. Liang, W. Wu, Y. Liang, A. Song, H. Zhang, W. Shi, T. C. Chang, and H. Cao, "High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p–n Heterojunction," ACS Applied Materials & Interfaces, 10(9), 8102−8109, (2018).
    [106]. P. H. Chen, Y. C. Tsao, Y. C. Chien, H. C. Chiang, H. M. Chen, Y. H. Lu, C. C. Shih, M. C. Tai, G. F. Chen, Y. L. Tsai, H. C. Huang, T. M. Tsai, and T. C. Chang, "A Dual-Gate InGaZnO4-Based Thin-Film Transistor for High-Sensitivity UV Detection," Advanced Materials Technologies, 4(8), 1900106, (2019).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE