簡易檢索 / 詳目顯示

研究生: 耿浩凱
Ken, Hao-Kai
論文名稱: 以短鏈自組裝單分子層4,4- DTBA作為蛋白質晶片之研究
Development and characterization of 4,4- DTBA as a monolayer for the protein chip
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 51
中文關鍵詞: 蛋白質晶片EDC/NHS自組裝單分子層4 4- DTBA11- MUA
外文關鍵詞: self-assembled monolayer, 4 4- DTBA, EDC/NHS, 11- MUA, Protein chip
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於DNA晶片技術的成熟發展,導致蛋白質晶片應用於臨床醫學檢測疾病上的地位也越來越重要。然而在製作蛋白質晶片過程中,利用自組裝單分子層來固定蛋白質已經是目前蛋白質固定技術的主流之一。但是儘管不斷的努力,長碳鏈硫醇 (thiol) 的單分子層會因為氧化作用形成disulfide而導致沈澱在基材上產生結構障礙,使得蛋白質無法固定於基材上,而導致蛋白質晶片的靈敏度大幅下降。因此本研究希望利用短鏈自組裝單分子層4,4- DTBA (4,4- Dithiodibutyric acid, disulfide) 來做為蛋白質和基材之間的橋樑,直接消除結構障礙的問題,使得蛋白質能完全固定於基材表面,並同時利用protein A來達到降低非特定吸附所導致的靈敏度下降的問題。另外本研究還探討了多種溶液對蛋白質晶片的影響,實驗中清洗的過程,利用PBST(PBS + 5% Tween20)來降低NHS esters水解的問題。並探討不同比例 (3:1和5:2)EDC/NHS的混合和利用不同溶劑(DI water, DI water + 0.1M MES和alcohol)來溶解EDC對於蛋白質固定技術上的影響做更進一步的探討與了解。實驗中的定性主要是利用親疏水角量測儀(contact angle goniometry), 原子力顯微鏡(atomic force microscopy,AFM), 傅必略紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR) 和橢偏儀(ellipsometry)。最後利用螢光protein A 作螢光強度分析並利用11- MUA (11-Mercapto-undecanoic acid, thiol) 作為實驗的對照組. 從實驗結果知道4,4- DTBA可以成功地用來作為蛋白質晶片的單分子層,PBST能有效低降低NHS esters的水解問題。最後酒精溶解EDC的.3:1混合比例的EDC/NHS在反應時間4小時能達到最佳的螢光強度。

    Despite considerable efforts, the fabrication of protein chips using a self-assembled monolayer (SAM) with a long chain length remains a challenge, due to its steric hindrance and the formation of disulfides, which may generate multilayer and block the terminal carboxylate groups of the SAM, and thus reduce the sensitivity of the chips. To eliminate those problems, the feasibility of using a short-chain SAM, 4,4- Dithiodibutyric acid (4,4-DTBA, disulfide), as a monolayer for the protein chips based on a gold surface was studied. Additionally, the hydrolysis of NHS esters can reduce the fluorescent intensity of protein chips. Thus, the effects of the solvents used in the washing step, the various ratios of EDC/NHS and dissolving EDC in DI water, DI water + 0.1 M MES and alcohol were also investigated to solve this problem in this study. Experiments for characterizing 4,4- DTBA were performed by contact angle goniometry, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and ellipsometry. Additionally, the fluorescent assay of 4,4- DTBA was characterized using protein A-FITC (fluorescein isothiocyanate). The results of 4,4- DTBA were compared with those of 11- Mercapto-undecanoic acid (11- MUA, thiol). The comparison results indicate that 4,4- DTBA can be adopted as a monolayer for the protein chips. The PBST (PBS+ 5% tween20) is more effective in reducing the hydrolysis of NHS esters than deionized water. Moreover, the 3:1 EDC/NHS ratio yields a higher fluorescent intensity than the 5:2 ratio. Finally, the solvent alcohol provides higher fluorescent intensity than other solvents with a 3:1 EDC/NHS ratio at the reaction time of 4 h with 160 mM 4,4- DTBA.

    TABLE OF CONTENT................................................................1 LIST OF FIGURES.................................................................2 CHAPTER 1 INTRODUCTION.........................................................3 1.1. Motivation and background..................................................3 1.2. Chips of protein microarrays...............................................7 1.2.1. Microarray of gel-immobilized compound (MAGIChip)........................8 1.2.2. Nanowell microarrays.....................................................8 1.2.3. Microarrays on glass microscopic slides..................................9 1.2.4. Protein microarray system from Zeptosens.................................10 1.2.5. ProteinChip technology from Ciphergen....................................11 1.2.6. Immobilization of native protein on microarrays..........................11 1.3. The relationship of protein adsorption and multianalyte assay sensitivity..12 1.4. Surface chemistry and treatment............................................14 1.5. Self-assembled monolayer...................................................17 CHAPTER 2 METHODS AND MATERIALS................................................19 2.1. Preparation of gold substrates.............................................19 2.2. Formation of monolayer.....................................................20 2.3. Immobilization of protein A-FITC...........................................20 2.4. Measurement of contact angle...............................................23 2.5. FTIR.......................................................................24 2.6. AFM........................................................................24 2.7. Ellipsometry...............................................................24 2.8. Characterization of binding capacity using protein A-FITC0.................25 CHAPTER 3 RESULTS AND DISSCUSSION..............................................26 3.1. Contact angle analysis.....................................................26 3.2. Characterization of self-assembled monolayer by FTIR.......................28 3.3. Topography analysis using AFM..............................................29 3.4. Ellipsometry...............................................................30 3.5. Characterization of Immobilization with protein A-FITC.....................31 3.6. Effects of solvents used in washing step...................................34 3.7. Effects of different ratios in EDC/NHS.....................................37 3.8. Effects of EDC dissolved into different solvents...........................38 CHAPTER 4 CONCLUSIONS..........................................................42 REFERENCE.......................................................................43 VITA............................................................................50

    [1] E. Shin, K.Lee, Y. Lee, ”A detection kit for Aeromonas hydrophila using antibody sensitized latex” , J. Microbiol. Biotechnol., vol. 10, 2000, pp. 595-598.
    [2] G. G. Guilbault, B. Hock and R. D. Schmid, ”Piezoelectric immunobiosensor for atrazine in drinking water”, Biosens. Bioelectron, vol. 7, 1992, pp. 411-419.
    [3] C. S. Liao, G. B. Lee, J. J. Wu, C. C. Chang, T. M. Hsieh, F. C. Huang and C. H. Luo,“ Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases”, Biosensors and Bioelectronics, vol. 20, 2005, pp. 1341-1348.
    [4] R. P. Ekins, “ Ligand assays: from electrophoresis to miniaturized microarrays”, Clin. Chem. vol. 44, No. 9, 1998, pp. 2015-2030.
    [5] S. Kanno, Y. Yanagida, T. Haruyama, E. Kobatake, and M. Aizawa, “ Assembling of engineered IgG-binding protein on gold surface for highly oriented antibody immobilization”, J. Biotechnol. vol. 76, 2000, pp. 207-214.
    [6] Y. S. Lo, N. D. Huefner, W. S. Chen, F. Stevens, J. M. Harris, T. P. B. Jr, “ specific interactions between biotin and avidin studied by atomic force microscopy using the poisson statistical analysis method”, Langmuir, vol. 15, 1999, pp.1373-1382.
    [7] R.J. Pei, J.M. Hu, Y. Hu, Y. Zeng, “ A Piezoelectric Immunosensor for Complement C4 Using Protein A Oriented Immobilization of Antibody”, J. Chem. Technol. Biotechnol., vol. 73, 1998, pp. 59-63.
    [8] G. B. Sigal, C. Bamddad, A. Barberis, J. Strominger, G.. M. Whitesides, ”A Self-Assembled Monolayer for the Binding and Study of Histidine-Tagged Proteins by Surface Plasmon Resonance”, Anal. Chem., vol. 68, 1996, pp. 490-497.
    [9] T. Dubrovsky, A. Tronin, S. Dubrovskaya, S. Vakula, C. Nicolini, “ Immunological activity of IgG Langmuir films oriented by protein A sublayer”, Sensors Actuators B, vol. 23, pp. 1995,1-7.
    [10] T. L. Breen, J. Tien, S. R. J. Oliver, T. Hadzic, G. M., “ Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays”, Whitesides: Science, vol. 284, 1999, pp. 948-951.
    [11] H. G. Choi, B. K. Oh, W. H. Lee, J. W. Choi,“ Deposition Behavior and Photoelectrochemical Characteristics of Chlorophyll a Langmuir-Blodgett Films”, Biotechnol. Bioprocess Eng., vol. 6, No. 3, 2001, pp. 183-188.
    [12] W. G. Koh and M. Pishko, ”Immobilization of multi-enzyme microreactors inside microfluidic devices”, Sensor and Actuators B, vol. 106, 2005, pp. 335-342.
    [13] O. Emanuele, Y. Lin, M.W. George,” The interaction of proteins and cells with self-assenbled monolayers of alkanethiolates on gold and silver”, Colloids and Surfaces B: Biointerfaces, vol. 15, 1993, pp. 3-30.
    [14] G. Henrik, A. Curioni, and W. Andreoni, “ Thiols and Disulfides on Au (111) Surface: The Headgroup-Gold Interaction”, J.Am. Soc., vol.122, 2000, pp. 3839-3842.
    [15] Y. M. Bae, B. K. Oh, W. Lee, W. H. Lee, J. W. Choi, “ Detection of insulin-antibody binding on a solid surface using imaging ellipsometry”, Biosens. Bioelectron., vol. 20, 2004, pp. 895–902.
    [16] S. J. Hinder, S. D. Connell, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, " Compositional Mapping of self-assembled monolayers within microfluidic networks", Langmuir, vol. 18, 2002, pp. 3151.
    [17] J. Noh, H.S. Kato, M. Kawai and M. J. Hara, " Surface Structure and Interface Dynamics of Alkanethiol Self-Assembled Monolayers on Au(111)”, Phys. Chem. B, vol. 106, 2002, pp.13268 – 13272.
    [18] J. W. Lee, S. J. Sim, S. M. Cho, J. Lee, “ Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody”, Biosensors and Bioelectronics, vol. 20, 2005, pp.1422-1427.
    [19] Y.T. Kim, R.L. McCarley, A.J. Bard, " Observation of N-octadecanethiol multilayer formation from solution onto gold”, Langmuir, vol. 9, 1993, pp. 1941-1944.
    [20] W. Lee, D. Bong, B. K. Oh, W. H. Lee, J. W. Choi, “ Nanoscale fabrication of protein A on self-assembled monolayer and its application to surface plasmon resonance immunosensor”, Enzyme and Microbial Technology, vol. 35, 2004, pp. 678-682.
    [21] M. C. Wang, J. D. Liao, C.C. Weng, R. Klauser, A. Shaporenko, M. Grunze and M.Zharnikov, ”Modification of Aliphatic Monomolecular Films by Free Radical Dominant
    Plasma: The Effect of the Alkyl Chain Length and the Substrate”, Langmuir, vol. 19, 2003, pp. 9774-9780.
    [22] N. Prathima, M. Harini, N. Rai, R. H. Chandrashekara, K. G. Ayappa, S. Sampath and S. K. Biswas, “ Thermal study of accumulation of conformational disorders in the self-assembled monolayers of C8 and C18 alkanethiols on the Au(111) surface”, Langmuir, vol. 21, 2005, pp. 2364-2374.
    [23] T. Hasunuma, S. Kuwabata, E. Fukusaki, and A. Tobayashi, “ Real-Time Quantification of Methanol in Plants Using a Hybrid Alcohol Oxidase-Peroxidase Biosensor”, Anal.Chem., vol.76, 2004, pp. 1500-1506.
    [24] M. R. Malone, J. F. Masson, S. Beaudoin, and K. S. Bookh, “ Novel surface coatings for antibody attachment to surface plasmon resonance sensors”, Proc. Of SPIE 6007 (60070A-1).
    [25] H. Neubert, E. S. Jacoby, S. S. Bansal, R. K. lles, D. A. Cowan, and A. T. Kicman, ”Enhanced Affinity Capture MALDI-TOF MS: Orientation of an Immunoglobulin G Using Recombinant Protein G”, Anal. Chem., vol. 74, 2002, pp. 3677-3682.
    [26] S. F. Chou, W. L. Hsu, J. M. Hwang, C. Y. Chen, ”Development of an immunosensor for human ferritin, a nonspecific tumor marLer based on surface plasmon resonance”, Biosensors and Bioelectronics, vol. 19, 2004, pp. 999-1005.
    [27] S. Susmel, C. K. O’Sullivan, G. G. Guilbault, “ Human Cytomegalovirus Detection by a Quartz Crystal Microbalance Immunosensor”, Enzyme and Microbial Technology, vol.27, 2000, pp. 639-945
    [28] M. Akram, M. C. Stuart, D. K.Y. Wong, “ Direct application strategy to immobilise a thioctic acid self-assembled monolayer on a gold electrode”, Anal. Chem. Acta, vol. 504, 2004, pp. 243-251.
    [29] T. Tanaka and T. Mastsunaga, “ Fully Automated Chemiluminescence Immunoassay of Insulin Using Antibody-Protein A-Bacterial Magnetic Particle Complexes”, Anal. Chem,, vol. 72, 2000,pp. 3518-3522.
    [30] I. C. Goncalves, M. Cristina L. Martins, M. A. Barbosa, B. D. Ratner, ”Protein adsorption on 18-alkyl chains immobilized on hydroxyl-terminated self-assembled monolayers”, Biomaterials, vol. 26, 2005, pp. 3891-3920.
    [31] Z. Grabarek, J. Gergely, ”Zero-length crosslinking procedure with the use of active esters”, Anal. Biochem., vol. 185, 1990, pp. 131-135.
    [32] M. L. Jennings, and J. S. Nicknish, “ Localization of a site of intermolecular cross-linking in human red blood cell band 3 protein”, J. Biol. Chem., vol. 260, 1985, pp. 5472-5479.
    [33] J. V. Staros, ”N-hydroxysulfosuccinimide cative esters: Bis(N-hydroxysulfosuccinimide) esters of two dicarboxylic acids are hydrophilic, membrance impermeant, protein cross-linkers”,Biochemistry, vol.21, 1982, pp. 3950-3955.
    [34] L. S. Jang and H. K. Keng, ”Development and Characterization of 4,4-Dithiodibutyric Acid as a Monolayer for Protein Chips”, Sensors and Materials, vol. 18, No. 7, 2006, pp. 367– 380.
    [35] Q. Fang, N. A. Alexander, B. O. Philip,”A total internal reflection fluorescence bio sensor for aluminum (III)”, Microchemical journal, vol. 70, 2001, pp. 63-68.
    [36] M. Schena, RA Heller, TP Theriault, “ Microarrays: Biotechnology’s discovery platform for functional genomics”, Trend. Biotech., vol. 16, 1998, pp. 301-306.
    [37] P. Arenkov, A. Gemmell, A. Kukhtin, “ Protein microchips: use for immunoassay and enzymatic reaction”, Anal. Biochem., vol. 278, 2000, pp. 123-131.
    [38] D. Guschin, A. Zaslavsky, G. Yershov, “ Manual manufacturing of oligonucleotide, DNA, and protein microchips”, Anal. Biochem., vol. 250, 1997, pp.203-211.
    [39] A.V. Vasiliskov, E. N. Timofeev, S. A. Surzhikov, “Fabrication of microarray of gel-immobilized compounds on a chip by copolymerization”, Biotechniques, vol. 27, pp. 592-594
    [40] V. E. Barsky, A. M. Kolchinsky, Y. P. Lysov,“ Biological microchips with hydrogel-immobilized nucleic acids, proteins, and other compounds: properties and applications in genomics”, Mol. Biol., vol. 36, 2002, pp. 437-455.
    [41]H. Zhu, M. Bilgin, R. Bangham,“ Global analysis of protein activities using proteome chips”, Science, vol. 293, pp. 2101-2105.
    [42] G. MacBeath, S. L. Schreiber, ”Printing proteins as microarrays for high-throughput function determination”, Sicence, vol.289, 2000, pp. 1760-1763.
    [43] B. B. Haab, M. J. Dunham, P. O. Brown,“ Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions”, Genome. Biol., vol. 2, 2001, research0004.10004.10013.
    [44] W. H. Robinson, C. DiGennaro, W. Hueber,“ Autoantigen microarray for multiplex characterization of autoantibody responses”, Nat. Med., vol. 8, 2002, pp.295-301.
    [45] B. Schweitzer, S. Roberts, B. Grimwade, ”Multiplexed protein profiling on microarrays by rolling-circle amplification”, Nat. Biotechnol., vol. 20, 2002, pp.259-365.
    [46] M. Pawlak, E. Schick, M.A. Bopp,“ Zeptosens’ protein micrroarrays: a novel high performance microarray platform for low abundance protein analysis”, Proteomics, vol. 2, pp.383-393.
    [47] M. Merchant, S. R. Weinberger,“ Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry”, Electrophoresis, vol. 21, 2000, pp.1164-1177.
    [48] V. V. Hlady, J. Buijs,“ rotein adsorption on solid surface”, Curr. Opin. Biotechnol., vol.7, 1996, pp. 72-77.
    [49] P. Tangvall, I. Lundtrom, B. Liedberg,“ rotein adsorption studies on model organic surfaces: an ellipsometric and infrared spectroscopic approach”, Biomaterials, vol. 19, 1996, pp. 407-422.
    [50] L. Vroman, A. L. Adams, “ Identification of adsorbed protein films by exposure to antisera and water vapor”, J. Biomed. Master Res., vol. 3, 1969, pp.669-671.
    [51] H. Elwing, A. Askendak, I. Lundstrom,“ Competiition between adsorbed fibrinogen and high molecular weight kininogen on solid surfaces incubated in human plasma (the Vorman effect): influence of surface weetability”, J. Biomed. Master Res., vol. 3, 1987, pp. 1023-1028.
    [52] E. Lutanie, J. C. Voegel, P. Schaaf,“ Competitive adsorption of human immunoglobulin G and albumin:consequence for structure and reactivity of the adsorbed layer”, Proc. Natl. Acad. Sci. USA, vol. 89, 1992, pp. 9890-9894.
    [53] V. Ball, P. Huetz, A. Elaissari,“ kinetics of exchange process in the adsorption of proteins on solid surfaces”, Proc. Natl. Acad. Sci. USA, vol. 91, 1994, pp. 7330-7334.
    [54] B. Lassen, M. Malmstern,“Competitive protein adsorption at plama polymer surfaces”, J.
    Colloid Interface Sci., vol. 186, 1997, pp. 9-16.
    [55] A. A. Karyakin, G. V. Presnova, M. Y. Rubtsova, “ Oriented immobilization of antibodies onto the gold surfaces via their native thiol groups”, Anal. Chem., vol. 72, 2000, pp. 3805-3811.
    [56] M. Nisnevitch, M. Kolog-Gulco, D. Trombka, “ Immobilization of antibodies onto glass wool”, J. Chromatogr. B. Biomed. Sci. Appl., vol. 49, 2000, pp. 217-223.
    [57] G. P. Anderson, M. A. Jacoby, F. S. Ligler, “ Effectiveness of protein A for antibody immobilization for a fiber optic biosensor”, Biosens. Bioelectron, vol. 12, 1997, pp. 329-336.
    [58] W. Kusnezow, J. D. Horeisel,“ Solid support for microarray immunoassay”, J. Mol. Recognit., vol. 16, 2003, pp.165-176.
    [59] P. Peluso, D. S. Wilson, D. Do,“ Optimizing antibody immobilization strategies for the construction of protein microarrays”, Anal. Biochem., vol. 312, 2003, pp. 113-124.
    [60] L. C. Shriver-Lake, B. Donner, R. Edelstein, “ Antibody immobilization using heterobifunctional crosslinkers”, Biosens Bioelectron, vol. 12, 1997, pp. 1101-1106.
    [61] J. Turkova,“ Oriented immobilization of biologically active proteins as a tool for revealing protein interaction and function”, J. Chromatogr. B. Biomed. Sci. Appl., vol. 722, 1999, pp. 11-31.
    [62] V. W. Jones, J. R. Kenseth, M. D. Porter, “ Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays”, Anal. Chem., vol. 70, 1998, pp. 1233-1241.
    [63] K. B. Lee, S. J. Park, C. A. Mirkin,“ Protein nanoarrays generated by dip-pen nanolithography”, science, vol. 295, 2002, pp. 1702-1705.

    下載圖示 校內:2010-06-15公開
    校外:2010-06-15公開
    QR CODE