| 研究生: |
李學霖 Li, Shiue-Lin |
|---|---|
| 論文名稱: |
使用Shewanella decolorationis NTOU1/膽紅素氧化脢做為陽/陰極生物性觸媒之微生物燃料電池以增進生物產氫程序之能源回收 Constructing a Microbial Fuel Cell Using Shewanella decolorationis NTOU1 / Bilirubin Oxidase as Anode / Cathode Biocatalysts to Facilitate the Bioenergy Recovery in an Anaerobic Hydrogenation Process |
| 指導教授: |
鄭幸雄
Cheng, Sheng-Shung |
| 共同指導教授: |
加納健司
Kenji Kano |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 174 |
| 中文關鍵詞: | 核黃素 、庫侖效率 、產電量 、電子平衡計算 、聚乙二胺 、膽紅素氧化酶 、ABTS 、NADH產生量 、Shewanella decolorationis NTOU1 |
| 外文關鍵詞: | ABTS, bilirubin oxidase, Charge production, Coulomb efficiency, electron balance, Flavins, NADH production, polyethyleneimine, Shewanella decolorationis NTOU1 |
| 相關次數: | 點閱:93 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在進料各種不同廚餘來源的間歇式連續攪拌反應器中,發現到體積產氫速率(rH2)與氫氣產量(YH2)分別大約是2 L-H2 L-1 d-1 與2 mmol-H2 g-COD-1。經過廚餘成份分析與反應槽操作結果,乳酸很容易因廚餘不當貯放即形成,或是在反應槽中經由Lactobacillus sp. (由分子生物檢測得知)的作用而形成高濃度的乳酸(6~12 g L-1)。因此本研究的目的為建構一微生物燃料電池,以達成產氫出流中高濃度有機酸再利用,提昇總能源回收效率。本論文分別研究Shewanella decolorationis NTOU1於膽紅素氧化酶於陽/陰極上的反應機制,期能提供一些深入的資訊以利未來的發展。
第四章的研究在探討S. decolorationis NTOU 產電的最佳條件。在經過72小時,使用0.1 cm厚之碳布電極的電化學反應器中,發現初始pH = 7以及30 oC是產電的最佳條件,但根據電子平衡的計算,最佳的庫侖效率(R)則在37 oC之下(細胞生長較差)中發現。此外,與乳酸相比,丙酮酸更易於被分解產生電流,但醋酸則較不易。這些結果說明了為何在諸多反應條件下,不常觀測到丙酮酸的累積,反之醋酸為最主要殘留的副產物。在S. decolorationis NTOU1 與S. putrefaciens ATCC8071的比較實驗之中發現,使用1.4 cm厚的碳布電極時,S. decolorationis NTOU1擁有更優越的產電能力與適應力,可視為一有潛力的產電菌種。
在第五章中,為了釐清何者為氧氣強化S. decolorationis NTOU1 產電量的重要因素,在此設計了一組實驗設計以做驗證(即:添加/不添加氧氣與添加/不添加氮源)。在六天的實驗過程中,所有的實驗都以定電位儀設定在+0.4 V(vs. Ag/AgCl),且添加35 mM的乳酸做為基質。不論有無添加氮源與否,較大的產電量皆發現在有氧的條件下。同時,尼古丁醯胺腺嘌呤二核苷酸(NADH)產生量(Q)被發現與產電量有顯著的正相關關係,但最高的R(18%)則在無添加氮源的厭氧條件下被發現。這些結果指出NADH的生成量是主導產電量增加的主要因素,但氧氣還原與細胞生長則會消耗部份的NADH電子當量而使得電子回收率降低。其他因素如細胞生長量及乳酸消耗率等等,皆不如NADH產生量的影響來得顯著。使用高效能液相層析儀分析,可以在好氧反應72 小時後的醱酵液之中發現一些氧化還原物質(如:0.5 uM的核黃素),但在厭氧反應下則沒有測得。然而,使用循環伏安法檢測,在兩條件下測得的氧化還原訊號是相近的。由此可推論氧氣可使得核黃素更容易分泌至胞外,但高濃度的胞外核黃素,並非增加產電量的最主要因素。更進一步地,從循環伏安圖的S型曲線可得知,可得知核黃素即使是在厭氧條件,皆粘著在細胞表面的狀況下,仍然能擔任稱職的電子傳遞媒角色。
在第六章之中,固定膽紅素氧化酶的實驗選用了聚乙二胺(PEI)做為固定劑。在製備程序中先用過碘酸將膽紅素氧化酶的表面的醣基氧化產生醛基,再使醛基與聚乙二胺的一級胺以席夫鹼的型式鍵結,最後將修飾後的酵素(BOD×PEI)以物理吸附方式固定在電極表面。此修飾後的電極在飽和溶氧,且添加0.2 mM的2,2'-聯氮基-雙-(3-乙基苯并噻唑啉-6-磺酸)(ABTS)的條件下,可產生90 mA cm-2的氧氣還原電流。在無氧的情形下,由循環伏安法觀之,可發現ABTS會因電荷相吸作用被吸附在電極表面,且在0.4及0.6 V(vs. Ag/AgCl)的電位區間發現兩對氧化還原反應訊號。這結果顯示ABTS被吸附在電極表面時並不安定。與使用戊二醛進行交聯法相比較,發現BOD×PEI法可以在添加較低濃度的ABTS時,即達到最大電流值。此結果佐證了因陽離子吸附作用使然,ABTS被濃縮在電極表面的現象。BOD×PEI亦施用在由碳布電極與碳素粒子Vulcan VC-72R構成的多孔性電極上。在飽和溶氧且輔以1500 rpm攪拌之下,最大電流值可達到1 mA cm-2。
As the results of operating intermittent-continuous-stirring-tank reactors (I-CSTR) fed with various sources of kitchen waste, the volumetric hydrogen production rate (rH2) and hydrogen yields (YH2) were found to be ca. 2 L-H2 L-1 d-1 and 2 mmol-H2 g-COD-1, respectively. As the results of kitchen-waste components and reactor performance, lactate might be readily accumulated to a high level (6-12 g L-1) due to inadequate storage of kitchen waste, or produced via Lactobacillus sp. (evidenced by molecular methods) existing in the fermentors. Therefore, the objective of this study was to develop a microbial fuel cell to reutilize high-strength organic acids, especially lactate, in the effluent of hydrogen fermentation. The electron-transfer mechanisms of two biocatalyst, Shewanella decolorationis NTOU1 and bilirubin oxidase (BOD), will be studied in this thesis to provide insight information in favor of future development.
In Chapter 4, the experiments were to evaluate the optimal conditions for S. decolorationis NTOU1 for electricity production using lactate as a substrate. In experiments using 0.1-cm-thick carbon felt, an initial pH of 7 and 30 oC yielded the greatest charge production (486 C) within 72 h, but the highest Coulombic efficiency (19%) was obtained at 37 oC, due to lower biomass growth, as determined from electron balance calculations. In addition, pyruvate was more readily degraded by S. decolorationis NTOU1 than was lactate; acetate was the most difficult to degrade. This result illustrated the acetate will be accumulated during the bio-anode process inoculated with Shewanella sp. In experiments using 1.4-cm-think carbon felt, S. decolorationis NTOU1, which is a potential strain for further applications, was found to have better adaptability and stronger charge production than S. putrefaciens ATCC8071.
In Chapter 5, to clarify the major factor which caused oxygen-enhancing charge production of Shewanella decolorationis NTOU1 towards a polarized anode, a series of experimental runs (i.e., with/without ambient air flushing and ammonia addition as nitrogen source) was conducted in this study. Within six-day operation at +0.4 V vs. Ag/AgCl and starting with 35 mM of lactate, consistently the electrical charge production under the aerobic condition was higher than that under the anaerobic condition. In all the experimental runs, the values of nicotinamide adenine dinucleotide (NADH) production were found to be correlated positively and significantly with the charge production, but the highest Coulombic efficiency of 18% was observed under the anaerobic conditions without ammonia addition while the lowest charge production occurred. Those results indicate that NADH production enhanced by oxygen is the leading cause of the increase of the charge production, but the biomass production and the oxygen reduction would both consume NADH electrons and lead to lower electron recoveries. In addition, whether under constant aerobic or anaerobic, or alternating aerobic/anaerobic conditions, chronoamperometric results made it possible to rule out other factors, like lactate uptake rate or cell growth, which might increase the charge production under aerobic conditions. By using high performance liquid chromatography, some diffusive flavins (e.g., 0.5 uM of riboflavin) were found under the aerobic condition, but were not found under the anaerobic one. However, from results of cyclic voltammetry (CV), the signals of flavins were found to be approximately the same under both conditions. Although it is inferred that oxygen renders the flavins secreted extracellularly, that is not the major effect of oxygen for boosting the charge production. Furthermore, bound flavins under anaerobic condition were found to be effectively electrocatalytic according to sigmoidal CV result.
In Chapter 6, BOD was bonded with polyethyleneimine (PEI) by oxidizing saccharide shells of BOD with periodate and forming a Schiff base with PEI (BOD×PEI), which physically adsorbed onto a glassy carbon electrode (GCE) surface. With 0.2 mM of 2,2’-azinobis (3-ethylbenzothiazolin-6-sulfonate) (ABTS) and saturated oxygen addition, the GCE/BOD×PEI exhibited a catalytic current of 90 mA cm-2. Under an oxygen-free condition, the ABTS was found to be absorbed in the BOD×PEI film, and two couples of redox signals were observed between 0.4 and 0.6 V (vs. Ag/AgCl), indicating that the ABTS2-/ABTS.- pair was unstable due to the anionic-charge difference. The concentration of ABTS at which the maximum current was obtained for the BOD×PEI method was lower than that for the glutaraldehyde-cross-linking method, indicating that the anion-absorption effect makes ABTS condense closed to electrode surface, which boosts the current density. The BOD×PEI method was applied to a porous electrode comprising carbon felt and attached Vulcan XC-72R, and a current density of ca. 1 mA cm-2 was obtained under a condition of saturated oxygen, 0.2 mM of ABTS, and a stirring rate of 1500 rpm.
Aelterman, P., Rabaey, K., Pham, H.T., Boon, N., and Verstraete, W., Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40(10), 3388-3394 (2006).
Bacher, A., Eberhardt, S., Fischer, M., Kis, K., and Richter, G., Biosynthesis of vitamin B2 (riboflavin). Annu. Rev. Nutr. 20, 153-167 (2000).
Bai, M. D., Wang, Y. F., Hsiao, C. J., Li, S. L., Chang, H. C., and Cheng, S.S., Monitoring bioactivity in hydrogen fermentation by an amperometric method with polyviologen modified working electrode. Int. J. Hydrogen Energy 31(10), 1357-1364 (2006).
Bard, A. J., and Faulkner, L. R., Electrochemical methods: fundamentals and applications. John Wiley & Sons, Inc. (2001).
Barton, S. C., Kim, H. H., Binyamin, G., Zhang, Y. C., and Heller, A., The "wired" laccase cathode: High current density electroreduction of O2 to water at+0.7 V (NHE) at pH 5. J. Am. Chem. Soc. 123(24), 5802-5803 (2001).
Benemann, J., Hydrogen biotechnology: Progress and prospects. Nat. Biotechnol. 14(9), 1101-1103 (1996).
Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller, S. D., Stirling, J. L., and Thurston, C.F., The sucrose fuel-cell – efficient biomass conversion using a microbial catalyst. Biotechnol. Lett. 7(10), 699-704 (1985).
Bianco, P., Haladjian, J., and Giannandreaderocles, S., Ion-exchange properties of poly(L-lysine) coatings on pyrolytic-graphite electrodes. Electroanalysis 6(1), 67-74 (1994).
Biffinger, J. C., Byrd, J. N., Dudley, B. L., and Ringeisen, B. R., Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens. Bioelectron. 23(6), 820-826 (2008a).
Biffinger, J. C., Pietron, J., Bretschger, O., Nadeau, L. J., Johnson, G. R., Williams, C. C., Nealson, K. H., and Ringeisen B. R., The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosens. Bioelectron. 24(4), 900-905 (2008b).
Biffinger, J. C., Pietron, J., Ray, R., Little, B., and Ringeisen, B.R., A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens. Bioelectron. 22(8), 1672-1679 (2007).
Biffinger, J. C., Ray, R., Little, B. J., Fitzgerald, L. A., Ribbens, M., Finkel, S. E., and Ringeisen, B. R., Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis. Biotechnol. Bioeng. 103(3), 524-531 (2009).
Bond, D. R, and Lovley, D. R., Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69(3), 1548-1555 (2003).
Bond, D. R., and Lovley, D. R., Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71(4), 2186-2189 (2005).
Bonnecaze, R. T., Mano, N., Nam, B., and Heller, A., On the behavior of the porous rotating disk electrode. J. Electrochem. Soc. 154(2), F44-F47 (2007).
Borole, A. P., LaBarge, S., and Spott, B.A., Three-dimensional, gas phase fuel cell with a laccase biocathode. J. Power Sources 188(2):421-426 (2009).
Bretschger, O., Obraztsova, A., Sturm, C. A., Chang, I. S., Gorby, Y.A., Reed, S. B., Culley, D. E., Reardon, C. L., Barua, S., Romine, M.F., Zhou, J., Beliaev, A. S., Bouhenni, R., Saffarini, D., Mansfeld, F., Kim, B. H., Fredrickson, J. K., and Nealson, K. H., Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 73(21), 7003-7012 (2007).
Brown, M. V., and Bowman, J.P., A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol. 35(3), 267-275 (2001).
Butzer, S., Rabaey, K., Freguia, S., Chumpia, A., and Keller, J., Design and construction of a pilot scale microbial fuel cell running on brewery wastewater. 11th World Congress on Anaerobic Digestion. Brisbane. 106-106 (2007).
Cao, X. X., Huang, X., Zhang, X. Y., Liang, P., and Fan, M. Z., A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria. Front. Environ. Sci. Engin. China 3(3), 307-312 (2009).
Carr, P. W., and Bowers, L. D., Immobilized enzymes in analytical an clinical chemistry. New York, John Wiley & Sons, Inc. (1980).
Chae, K. J., Choi, M. J., Lee, J. W., Kim, K. Y., and Kim, I. S., Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource Technol. 100(14), 3518-3525 (2009).
Chang, H. C., Osawa, M., Matsue, T., and Uchida, I., A novel polyviologen electrode fabricated by ekectrichemical cross-linking. J. Chem. Soc., Chem. Commun. 9, 611-612 (1991).
Chaudhuri, S. K., and Lovley, D. R., Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21(10), 1229-1232 (2003).
Chen, C. H., Chang, C. F., Ho, C. H., Tsai, T. L., and Liu, S.M., Biodegradation of crystal violet by a Shewanella sp. NTOU1. Chemosphere 72(11), 1712-1720 (2008).
Christenson, A., Shleev, S., Mano, N., Helle,r A., and Gorton, L., Redox potentials of the blue copper sites of bilirubin oxidases. Biochim. Biophys. Acta-Bioenerg. 1757(12), 1634-1641 (2006).
Clauwaert, P., Rabaey, K., Aelterman, P., De Schamphelaire, L., Ham, T. H., Boeckx, P., Boon, N., and Verstraete, W., Biological denitrification in microbial fuel cells. Environ. Sci. Technol. 41(9), 3354-3360 (2007).
Cocaignbousquet, M., and Lindley, N. D., Pyruvate overflow and carbon flux within the central metabolic pathways of Corynebacterium glutamicum during growth on lactate. Enzyme Microb. Tech. 17(3), 260-267 (1995).
Cooney, M. J., Roschi, E., Marison, I. W., Comninellis, C., and vonStockar, U., Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: Evaluation for use in a biofuel cell. Enzyme Microb. Tech. 18(5), 358-365 (1996).
Cussler, E. L., Diffusion: Mass transfer in fluid systems. New York, Cambridge University Press (2009).
Das, D., and Veziroglu, T. N., Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 26(1), 13-28 (2001).
Dauner, M., Sonderegger, M., Hochuli, M., Szyperski, T., Wuthrich, K., Hohmann, H. P., Sauer, U., and Bailey, J. E., Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl. Environ. Microbiol. 68(4), 1760-1771 (2002).
Delaney, G. M., Bennetto, H. P., Mason, J. R., Roller, S. D., Stirling, J. L., and Thurston, C. F., Electron-transfer coupling in microbial fuel-cells. 2. performance of fuel-cells containing selected microorganism mediator substrate combinations. J. Chem. Technol. Biotechnol. 34(1), 13-27 (1984).
Dewhirst, F. E., Paster, B. J., Tzellas, N., Coleman, B., Downes, J., Spratt, D. A., and Wade, W. G., Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of Olsenella gen. nov., reclassification of of Lactobacillus uli as Olsenella uli comb. nov and description of Olsenella profusa sp nov. Int. J. Syst. Evol. Microbiol. 51, 1797-1804 (2001).
Duran, N., Rosa, M. A., D'Annibale, A., and Gianfreda, L., Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: A review. Enzyme Microb. Tech. 31(7), 907-931 (2002).
Farneth, W. E., Diner, B.A., Gierke, T. D., and D'Amore, M. B., Current densities from electrocatalytic oxygen reduction in laccase/ABTS solutions. J. Electroanal. Chem. 581(2), 190-196 (2005).
Freguia, S., Rabaey, K., Yuan, Z. G., and Keller, J., Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ. Sci. Technol. 41(8), 2915-2921 (2007).
Fricke, K., Harnisch, F., and Schroder, U., On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy Environ. Sci. 1(1), 144-147 (2008).
Giraud, E., Brauman, A., Keleke, S., Lelong, B., and Raimbault, M., Isolation and physiological study of an amylolytic strain of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 36(3), 379-383 (1991).
Goldstein, I. M., Kaplan, H. B., Edelson, H. S., and Weissmann, G., Ceruloplamin – scavenger of superoxide anion radicals. J. Biol. Chem. 254(10), 4040-4045 (1979).
Gorby, Y. A., Yanina, S., McLean, J. S, Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K.S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K. H., Fredrickson, J. K., Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Nat. Acad. Sci. USA. 103(30), 11358-11363 (2006).
Gregory, K. B., Bond, D. R., and Lovley, D. R., Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6(6), 596-604 (2004).
Gregory, K. B., and Lovley, D. R., Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39(22), 8943-8947 (2005).
Ha, P. T., Tae, B., and Chang, I. S., Performance and bacterial consortium of microbial fuel cell fed with formate. Energy Fuels 22(1), 164-168. (2008).
Habermann, W., and Pommer, E. H., Biological fuel-cells with sulfide storage capacity. Appl. Microbiol. Biotechnol. 35(1), 128-133 (1991).
Hammes, W. P., and Christian, H., The genera Lactobacillus and Carnobacterium. In: Prokaryotes third ed., Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., and Stackebrandt, E. (Eds), New York, Springer. 320-403. (2006).
Hawkes, F. R., Dinsdale, R., Hawkes, D. L., and Hussy, I., Sustainable fermentative hydrogen production: challenges for process optimisation. Int. J. Hydrogen Energy 27(11-12), 1339-1347 (2002).
He, Z., Minteer, S. D., and Angenent, L. T., Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 39(14), 5262-5267 (2005).
Hecht, C., and Griehl, C., Investigation of the accumulation of aromatic compounds during biogas production from kitchen waste. Bioresource Technol. 100(2), 654-658 (2009).
Heller, A., Miniature biofuel cells. Phys. Chem. Chem. Phys. 6(2), 209-216 (2004).
Hernandez, M. E., and Newman, D. K., Extracellular electron transfer. Cell. Mol. Life Sci. 58(11), 1562-1571 (2001).
Huang, L. P., Zeng, R. J., and Angelidaki, I., Electricity production from xylose using a mediator-less microbial fuel cell. Bioresource Technol. 99(10), 4178-4184 (2008).
Ivanova, E. P., Gorshkova, N. M., Bowman, J. P., Lysenko, A. M., Zhukova, N. V., Sergeev, A. F., Mikhailov, V. V., and Nicolau, D. V., Shewanella pacifica sp. nov., a polyunsaturated fatty acid-producing bacterium isolated from sea water. Int. J. Syst. Evol. Microbiol. 54, 2441-2441. (2004).
Ivnitski, D., Artyushkova, K., and Atanassov, P., Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi Myrothecium verrucaria. Bioelectrochemistry 74(1), 101-110 (2008).
Ivnitski, D., and Atanassov, P., Electrochemical studies of intramolecular electron transfer in laccase from Trametes versicolor. Electroanalysis 19(22), 2307-2313 (2007).
Juang, C. P., Whang, L. M., and Cheng, H. H., Evaluation of bioenergy recovery processes treating organic residues from ethanol fermentation process. Bioresource Technol. 102(9), 5394-5399 (2011).
Kamitaka, Y., Tsujimura, S., and Kano, K., High current density bioelectrolysis of D-fructose at fructose dehydrogenase-adsorbed and Ketjen black-modified electrodes without a mediator. Chem. Lett. 36(2), 218-219 (2007).
Kano, K., and Ikeda, T., Fundamentals and practices of mediated bioelectrocatalysis. Anal. Sci. 16(10),1013-1021 (2000).
Katz, E., Lioubashevski, O., and Willner, I., Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: Enhanced performance of biofuel cells. J. Am. Chem. Soc. 127(11), 3979-3988 (2005).
Kiely, P. D., Call, D. F., Yates, M. D., Regan, J. M., and Logan, B. E., Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Appl. Microbiol. Biotechnol. 88(1), 371-380 (2010).
Kim, B. H., Ikeda, T., Park, H. S., Kim, H. J., Hyun, M. S., Kano, K., Takagi, K., and Tatsumi, H., Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol. Techniq. 13(7), 475-478 (1999a).
Kim, B. H., Kim, H. J., Hyun, M. S., and Park, D. H., Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9(2), 127-131 (1999b).
Kim, B. H., Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., Lee, J., and Phung, N.T., Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63(6), 672-681 (2004).
Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., and Kim, B. H., A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Tech. 30(2), 145-152 (2002).
Kim, J. R., Jung, S. H., Regan, J. M., and Logan, B. E., Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technol. 98(13), 2568-2577 (2007).
Kim, S. H., and Shin, H. S., Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. Int. J. Hydrogen Energy 33(19), 5266-5274 (2008).
Kontani, R., Tsujimura, S., and Kano, K., Air diffusion biocathode with CueO as electrocatalyst adsorbed on carbon particle-modified electrodes. Bioelectrochemistry 76(1-2), 10-13 (2009).
Kumari, S., Beatty, C. M., Browning, D. F., Busby, S. J. W., Simel, E. J., Hovel-Miner, G., and Wolfe, A. J., Regulation of acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182(15), 4173-4179 (2000).
Lee, H. S., Parameswaran, P., Kato-Marcus, A., Torres, C. I., and Rittmann, B. E., Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res. 42(6-7), 1501-1510 (2008a).
Lee, J. Y., Phung, N. T., Chang, I. S., Kim, B. H., and Sung, H. C., Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223(2), 185-191 (2003).
Lee, Z. K., Li, S. L., Kuo, P. C., Chen, I. C., Tien, Y. M., Huang, Y. J., Chuang, C. P., Wong, S. C., and Cheng, S. S., Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste. Int. J. Hydrogen Energy 35(24), 13458-13466 (2010).
Lee, Z. K., Li, S. L., Lin, J. S., Wang, Y. H., Kuo, P. C., and Cheng, S. S., Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. Int. J. Hydrogen Energy 33(19), 5234-5241 (2008b).
Lei, C. H., and Deng, J. Q., Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite-modified bovine serum albumin-glutaraldehyde matrix on a glassy carbon electrode surface. Anal. Chem. 68(19), 3344-3349 (1996).
Levin, D. B., Pitt, L., and Love, M., Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy 29(2), 173-185 (2004).
Li, C. L., and Fang, H. H. P., Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 37(1), 1-39 (2007).
Li, S. L., Lin, J. S., Wang, Y. H., Lee, Z. K., Kuo, S. C., Tseng, I. C., and Cheng, S. S., Strategy of controlling the volumetric loading rate to promote hydrogen-production performance in a mesophilic-kitchen-waste fermentor and the microbial ecology analyses. Bioresource Technol., In Press.
Li, S. L., Whang, L. M., Chao, Y. C., Wang, Y. H., Wang, Y. F., Hsiao, C. J., Tseng, I. C., Bai, M. D., and Cheng, S. S., Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose-peptone and starch-peptone. Int. J. Hydrogen Energy 35(1), 61-70 (2010a).
Li, S. L., Freguia, S., Liu, S. M., Cheng, S. S., Tsujimura, S., Shirai, O., and Kano, K., Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes. Biosens. Bioelectron. 25(12), 2651-2656 (2010b).
Li, S. L., Kuo, S. C., Lin, J. S., Lee, Z. K., Wang, Y. H., and Cheng, S. S., Process performance evaluation of intermittent-continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste. Int. J. Hydrogen Energy 33(5), 1522-1531 (2008).
Liu, D. W., Liu, D. P., Zeng, R. J., and Angelidaki, I., Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 40(11), 2230-2236 (2006).
Liu, H., Cheng, S., Huang, L. P., and Logan, B. E., Scale-up of membrane-free single-chamber microbial fuel cells. J. Power Sources 179(1), 274-279. (2008).
Liu, H., Cheng, S. A., and Logan, B. E., Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 39(14), 5488-5493 (2005a).
Liu, H., Cheng, S. A., and Logan, B. E., Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39(2), 658-662 (2005b).
Liu, H., Grot, S., and Logan, B. E., Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39(11):4317-4320 (2005c).
Liu, H., and Logan, B. E., Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38(14), 4040-4046 (2004).
Logan, B. E., Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7(5), 375-381 (2009).
Logan, B. E., Murano, C., Scott, K., Gray, N. D., and Head, I. M., Electricity generation from cysteine in a microbial fuel cell. Water Res. 39(5), 942-952 (2005).
Lovley, D. R., Dissimilatory Fe (III) and Mn (IV) reduction. Microbiol. Rev. 55(2), 259-287 (1991).
Lovley, D. R., Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4(7), 497-508 (2006).
Madigan, M. T., Martinko, J. M., and Parker, J., Brock biology of microorganisms. New Jersey, Pearson Education, Inc. (2003).
Mano, N., Fernandez, J. L., Kim, Y., Shin, W., Bard, A. J., and Heller, A., Oxygen is electroreduced to water on a "wired" enzyme electrode at a lesser overpotential than on platinum. J. Am. Chem. Soc. 125(50), 15290-15291 (2003).
Mano, N., Kim, H. H., Zhang, Y. C., and Heller, A., An oxygen cathode operating in a physiological solution. J. Am. Chem. Soc. 124(22), 6480-6486 (2002).
Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., and Bond, D. R., Shewanella Secretes flavins that mediate extracellular electron transfer. Proc. Nat. Acad. Sci. USA. 105(10), 3968-3973 (2008).
Massanet-Nicolau, J., Guwy, A., Dinsdale, R., Premier, G., and Esteves, S., Production of hydrogen from sewage biosolids in a continuously fed bioreactor: Effect of hydraulic retention time and sparging. Int. J. Hydrogen Energy 35(2), 469-478 (2010).
Masuda, M., Freguia, S., Wang, Y. F., Tsujimura, S., and Kano, K., Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis. Bioelectrochemistry 78(2), 173-175 (2010).
Meshulam-Simon, G., Behrens, S., Choo, A. D., and Spormann, A. M., Hydrogen metabolism in Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 73(4), 1153-1165 (2007).
Messerschmidt, A., Ladenstein, R., Huber, R., Bolognesi, M., Avigliano, L., Petruzzelli, R., Rossi, A., and Finazziagro, A., Refined crystal-structure of ascorbate oxidase at 1.9 A resolution. J. Mol. Biol. 224(1), 179-205 (1992).
Min, B., and Logan, B. E., Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38(21), 5809-5814 (2004).
Min, B. K., Cheng, S. A., and Logan, B. E., Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 39(9), 1675-1686 (2005a).
Min, B. K., Kim, J. R., Oh, S. E., Regan, J. M., and Logan, B. E., Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39(20), 4961-4968 (2005b).
Moehlenbrock, M. J., and Minteer, S. D., Extended lifetime biofuel cells. Chem. Soc. Rev. 37(6), 1188-1196 (2008).
Mohan, S. V., Mohanakrishna, G., Reddy, B. P., Saravanan, R., and Sarma, P. N., Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem. Eng. J. 39(1), 121-130 (2008a).
Mohan, S. V., Raghavulu, S. V., and Sarma, P. N., Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia. Biosen. Bioelectron. 24(1), 41-47 (2008b).
Moore, C. M., Akers, N. L., Hill, A. D., Johnson, Z. C., and Minteer, S. D., Improving the environment for immobilized dehydrogenase enzymes by modifying Nafion with tetraalkylammonium bromides. Biomacromolecules 5(4), 1241-1247 (2004).
Morris, J. M., Jin, S., Crimi, B., and Pruden, A., Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chem. Eng. J. 146(2):161-167 (2009).
Myers, C. R., Carstens, B. P., Antholine, W. E., and Myers, J. M., Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Appl. Microbiol. 88(1), 98-106 (2000).
Myers, C. R., and Myers, J. M., Ferric reductase associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1. FEMS Microbiol. Lett. 108(1), 15-22 (1993).
Myers, J. M., Antholine, W. E., and Myers, C. R., Vanadium(V) reduction by Shewanella oneidensis MR-1 requires menaquinone and cytochromes from the cytoplasmic and outer membranes. Appl. Environ. Microbiol. 70(3), 1405-1412 (2004).
Myers, J. M., and Myers, C. R., Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67(1), 260-269 (2001).
Nealson, K. H., and Scott, J. H., Ecophysiology of the Genus Shewanella In: Prokaryotes third ed., Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., and Stackebrandt, E. (Eds.), New York, Springer-Verlag. 1133-1151 (2006).
Newman, D. K., and Kolter, R., A role for excreted quinones in extracellular electron transfer. Nature 405(6782), 94-97 2000.
Newton, G. J., Mori, S., Nakamura, R., Hashimoto, K., and Watanabe, K., Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells. Appl. Environ. Microbiol. 75(24), 7674-7681 (2009).
Noike, T., Takabatake, H., Mizuno, O., and Ohba, M., Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int. J. Hydrogen Energy 27(11-12), 1367-1371 (2002).
Oh, S., Min, B., and Logan, B. E., Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38(18), 4900-4904 (2004).
Okamoto, M., Miyahara, T., Mizuno, O., and Noike, T., Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci. Technol. 41(3), 25-32 (2000).
Palmore, G. T. R., and Kim, H. H., Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell. J. Electroanal. Chem. 464(1), 110-117 (1999).
Pant, D., Van Bogaert, G., Diels, L., and Vanbroekhoven, K., A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol. 101(6), 1533-1543 (2010).
Park, D. H., and Zeikus, J. G., Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66(4), 1292-1297 (2000).
Park, D. H., and Zeikus, J. G., Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59(1), 58-61 (2002).
Peng, L., You, S. J., and Wang, J. Y., Electrode potential regulates cytochrome accumulation on Shewanella oneidensis cell surface and the consequence to bioelectrocatalytic current generation. Biosens. Bioelectron. 25(11), 2530-2533 (2010).
Pereira, F. C., Bergamo, E. P., Stradiotto, N. R., Zanoni, M. V. B., and Fogg, A. G., Modification of glassy carbon electrodes with a poly-L-lysine/glutaraldehyde film. Electroanalysis 16(17), 1439-1443 (2004).
Pham, T. H., Rabaey, K., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Boon, N., and Verstraete, W., Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng. Life Sci. 6(3), 285-292 (2006).
Potter, M. C., Electrical effects accompanying the decomposition of organic compounds. Proc. Royal Soc. B 84, 260-277 (1911).
Prasad, K. S., Arun, A. B., Rekha, P. D., Young, C. C,, Chang, J. L., and Zen, J. M., A Microbial sensor based on direct electron transfer at Shewanella sp. drop-coated screen-printed carbon electrodes. Electroanalysis 21(14),1646-1650 (2009).
Rabaey, K., Lissens, G., Siciliano, S. D., and Verstraete, W., A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25(18), 1531-1535 (2003).
Rabaey, K., and Verstraete, W., Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 23(6), 291-298 (2005).
Record, E., Punt, P. J., Chamkha, M., Labat, M., van den Hondel, C., and Asther, M., Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur. J. Biochem. 269(2), 602-609 (2002).
Ren, Z. Y., Ward, T. E., and Regan, J. M., Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ. Sci. Technol. 41(13), 4781-4786 (2007).
Rosenbaum, M., Schroder, U., and Scholz, F., Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions. J. Solid State Electrochem. 10(10), 872-878 (2006).
Rosenbaum, M. A., Bar, H. Y., Beg, Q. K., Segre, D., Booth, J., Cotta, M. A., and Angenent, L. T., Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor. Bioresource Technol. 102(3), 2623-2628 (2011).
Rozendal, R. A., Hamelers, H. V. M., Rabaey, K., Keller, J., and Buisman, C. J. N., Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 26(8), 450-459 (2008).
Russell, J. B., and Rychlik, J. L., Factors that alter rumen microbial ecology. Science 292(5519), 1119-1122 (2001).
Sakurai, T., and Kataoka, K., Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem. Rec. 7(4), 220-229 (2007).
Schaetzle, O., Barriere, F., and Baronian, K., Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity. Energy Environ. Sci. 1(6), 607-620 (2008).
Schubert, C., Circuits of slime. Nature 441(7091), 277-279 (2006).
Scott, J. H., and Nealson, K. H., A biochemical-study of the intermediary carbon metabolism of Shewanella putrefaciens. J. Bacteriol. 176(11), 3408-3411 (1994).
Scott, S. L., Chen, W. J., Bakac, A., and Espenson, J. H., Spectroscopic parameters, electrode-potentials, acid ionization-constants, and electron-exchange rates of the 2.2’-azinobis (3-ethylbenzothiazoline-6-sulfonate) radicals and ions. J. Phys. Chem. 97(25), 6710-6714 (1993).
Scouten, W. H., Luong, J. H. T., and Brown, R. S., Enzyme or protein immobilization techniques for applications in biosensor design. Trends Biotechnol. 13(5), 178-185 (1995).
Shen, G. J., Annous, B. A., Lovitt, R. W., Jain, M. K., and Zeikus, J. G., Biochemical route and control of butyrate synthesis in Butyribacterium methylotrophicum. Appl. Microbiol. Biotechnol. 45(3), 355-362 (1996).
Shimizu, A., Kwon, J. H., Sasaki, T., Satoh, T., Sakurai, N., Sakurai, T., Yamaguchi, S., and Samejima, T., Myrothecium verrucaria bilirubin oxidase and its mutants for potential copper ligands. Biochemistry 38(10), 3034-3042 (1999).
Solomon, E. I., Sundaram, U. M., and Machonkin, T. E., Multicopper oxidases and oxygenases. Chem. Rev. 96(7), 2563-2605 (1996).
Suarez, G., Jackson, R. J., Spoors, J. A., and McNeil, C. J., Chemical introduction of disulfide groups on glycoproteins: A direct protein anchoring scenario. Anal. Chem. 79(5), 1961-1969 (2007).
Tanaka, N., and Murao, S., Purification and some properties of bilirubin oxidase of Myrothecium verrucaria MT-1. Agri. Biol. Chem. 46(10), 2499-2503 (1982).
Tang, Y. J. J., Meadows, A. L., and Keasling, J. D., A kinetic model describing Shewanella oneidensis MR-1 growth, substrate consumption, and product secretion. Biotechnol. Bioengin. 96(1), 125-133 (2007).
Tender, L. M., Reimers, C. E., Stecher, H. A., Holmes, D. E., Bond, D. R., Lowy, D. A., Pilobello, K., Fertig, S. J., and Lovley, D. R., Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20(8), 821-825 (2002).
Thrash, J. C., Van Trump, J. I., Weber, K. A., Miller, E., Achenbach, L. A., and Coates, J. D., Electrochemical stimulation of microbial perchlorate reduction. Environ. Sci. Technol. 41(5), 1740-1746 (2007).
Thurston, C. F., The structure and function of fungal laccases. Microbiology-Sgm 140, 19-26 (1994).
Thurston, C. F., Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller, S. D., and Stirling, J. L., Glucose-metabolism in a microbial fuel-cell – stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel-cell and its relation to coulombic yields. J. General Microbiol. 131, 1393-1401 (1985).
Topcagic, S., and Minteer, S. D., Development of a membraneless ethanol/oxygen biofuel cell. Electrochim. Acta 51(11), 2168-2172 (2006).
Tsujimura, S., Fujita, M., Tatsumi, H., Kano, K., and Ikeda, T., Bioelectrocatalysis-based dihydrogen/dioxygen fuel cell operating at physiological pH. Phys. Chem. Chem. Phys. 3(7), 1331-1335 (2001a).
Tsujimura, S., Kamitaka, Y., and Kano, K., Diffusion-controlled oxygen reduction on multi-copper oxiclase-adsorbed carbon aerogel electrodes without mediator. Fuel Cells 7(6), 463-469 (2007).
Tsujimura, S., Kano, K., and Ikeda, T., Bilirubin oxidase in multiple layers catalyzes four-electron reduction of dioxygen to water without redox mediators. J. Electroanal. Chem. 576(1), 113-120 (2005).
Tsujimura, S., Miura, Y., and Kano, K., CueO-immobilized porous carbon electrode exhibiting improved performance of electrochemical reduction of dioxygen to water. Electrochim. Acta 53(18), 5716-5720 (2008).
Tsujimura, S., Tatsumi, B., Ogawa, J., Shimizu, S., Kano, K., and Ikeda, T., Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2,2 '-azinobis (3-ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator. J. Electroanal. Chem. 496(1-2), 69-75 (2001b).
Tsujimura, S., Wadano, A., Kano, K., and Ikeda, T., Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase. Enzyme Microb. Tech. 29(4-5), 225-231 (2001c).
Turner, J. A., Sustainable hydrogen production. Science 305(5686), 972-974 (2004).
Ueno, Y., Fukui, H., and Goto, M., Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ. Sci. Technol. 41(4), 1413-1419 (2007).
Ueno, Y., Otsuka, S., and Morimoto, M., Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J. Fermen. Bioengin. 82(2),194-197 (1996).
Vanlier, J. B., Grolle, K. C. F., Frijters, C., Stams, A. J. M., and Lettinga, G., Effects of acetate, propionate, and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures. Appl. Environ. Microbiol. 59(4), 1003-1011 (1993).
Velasquez-Orta, S. B., Head, I. M., Curtis, T. P., Scott, K., Lloyd, J. R., and von Canstein, H., The effect of flavin electron shuttles in microbial fuel cells current production. Appl. Microbiol. Biotechnol. 85(5), 1373-1381 (2010).
Venkateswaran, K., Moser, D. P., Dollhopf, M. E., Lies, D. P., Saffarini, D. A., MacGregor, B. J., Ringelberg, D. B., White, D. C., Nishijima, M., Sano, H. Burghardt, J., Stackebrandt E., and Nealson, K. H., Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Bacteriol. 49, 705-724 (1999).
von Canstein, H., Ogawa, J., Shimizu, S., and Lloyd, J. R., Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74(3), 615-623 (2008).
Wang, X. M., Wang, Q. H., Ren, N. Q., and Wang, X. Q., Lactic acid production from kitchen waste with a newly characterized strain of Lactobacillus plantarum. Chem. Biochem. Eng. 19(4), 383-389 (2005).
Wang, Y. F., Cheng, S. S., Tsujimura, S., Ikeda, T., and Kano, K., Escherichia coli-catalyzed bioelectrochemical oxidation of acetate in the presence of mediators. Bioelectrochemistry 69(1), 74-81 (2006).
Wang, Y. H., Li, S. L., Chen, I. C., Tseng, I. C., and Cheng, S. S., A study of the process control and hydrolytic characteristics in a thermophilic hydrogen fermentor fed with starch-rich kitchen waste by using molecular-biological methods and amylase assay. Int. J. Hydrogen Energy 35(23), 13004-13012 (2010).
Widsten, P., and Kandelbauer, A., Laccase applications in the forest products industry: A review. Enzyme Microb. Tech. 42(4),293-307 (2008).
Xu, M. Y., Guo, J., Cen, Y. H., Zhong, X. Y., Cao, W., and Sun, G. P., Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int. J. Syst. Evol. Microbiol.55, 363-368 (2005).
Yu, H. Q., Zhu, Z. H., Hu, W. R., and Zhang, H. S., Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int. J. Hydrogen Energy 27(11-12), 1359-1365 (2002).
Zeng, K., Tachikawa, H., Zhu, Z. Y., and Davidson, V. L., Amperometric detection of histamine with a methylamine dehydrogenase polypyrrole-based sensor. Anal. Chem. 72(10), 2211-2215 (2000).
Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P., and Herrmann, I., Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 7(12), 1405-1410 (2005).
Zhu, Q., Shentu, B. Q., Liu, Q., and Weng, Z. X., Swelling behavior of polyethylenimine-cobalt complex in water. Eur. Poly. J. 42(6), 1417-1422 (2006).
Zimmermann, H., Lindgren, A., Schuhmann, W., and Gorton, L., Anisotropic orientation of horseradish peroxidase by reconstitution on a thiol-modified gold electrode. Chem.-Eur. J. 6(4), 592-599 (2000).