| 研究生: |
曹瑋哲 Tsao, Wei-Che |
|---|---|
| 論文名稱: |
中孔洞碳/氧化矽複合材料的合成與應用 Synthesis and Applications of Mesoporous Carbon/Silica Composite |
| 指導教授: |
林弘萍
Ling, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 中孔洞碳/氧化矽複合材料;保溫材料;選擇性太陽輻射吸收材料 |
| 外文關鍵詞: | Mesoporous Carbon/Silica Composite |
| 相關次數: | 點閱:73 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用不同合成方式合成中孔洞碳/氧化矽複合材料作為選擇性太陽輻射吸收材料,並以氮氣等溫吸附脫附儀及熱重分析儀得到樣品之碳比表面積數據及樣品含碳量與其日照實驗的升溫數據相比較,得出樣品輻射吸收能力。經由鹼式合成法可合成出高碳比表面積(900~1800 m2g-1)與高含碳量(25~33%)的中孔洞碳/氧化矽複合材料,而以氧化矽模板法則可合成出可調控材料粒徑大小(100 nm~2 um)的中孔洞碳/氧化矽複合材料,且合成之中孔洞碳/氧化矽複合材料在日照實驗中其吸收輻射的能力優於竹碳與活性碳XC-72。
另外,嘗詴將奈米銅金屬導至中孔洞碳/氧化矽複合材料結構中,提升複合材料導熱能力。並藉由控制不同熱處理過程生成具有不同氧化態的金屬奈米複合材料。亦因此發展出奈米氧化亞銅在氧化矽、碳或碳/氧化矽擔體上的合成方式。
最後利用界面活性劑P123與矽酸鈉,將中孔洞氧化矽合成於石墨化介相瀝青粉末(MGP)表面,在不同MGP用量下合成出的負極材料,經由製成硬幣型電池充放電測詴及循環壽命測詴,探討此負極材料之充放電特性、循環壽命。結果顯示,隨著MGP用量增加其電容量亦隨之增加並會達到一最佳化條件,以最佳條件進行實驗時可將MGP理論電容量320 mAh/g提升至~440 mAh/g,經過0.1 C 五十圈充放電循環後,依然可維持穩定的電容量值。
This research uses different composing ways to synthesize Mesoporous carbon/Silica composite material as selective solar-absorber materials, and we use Nitrogen adsorption/desorption isothermal measurements and Thermogravimetric Analyzer –TGA to obtain the specimen’s data of carbon specific surface and its carbon content. Comparing with the rising-temperature data of the experiment which is illuminated by sunlight, we can know the former’s radiation absorptive capacity. This composing way makes use of PF resin, Polymer surfactants, and Sodium silicate and let them homogeneous mixing within highly alkaline solution (pH>11), and acidifies by vitriol solution to adjust gel solution‘s PH value from 4.0 to 6.0. It’s also via pyrolysis to generate Mesoporous carbon and Silica composite material with high Carbon specific surface (900~1900 m2g-1) and high Carbon content(25~33%). On the other hand, Silica template is the composing way of using polymer surfactants’ micelle within the certain concentration. This way can synthesize out the controllable-diametered (100 nm~2 um) Mesoporous carbon/silica composite material whose radiation absorptive capacity illuminated by sunlight is better than Bamboo Charcoal and Active carbon XC-72.
Moreover, we attempt to combine nano cuprous oxide with Mesoporous carbon/silica composite material for increasing the composite’s heat conduction capacity, and also use different ways of controlling heat treatment to generate the metal nano-composites in varied oxidation state. As a result, there are some composing ways of synthesizing nano cuprous oxide into silica and carbon or carbon and silica support.
Finally, we use Surface-active agent P123 and Sodium Silicate to synthesize Mesoporous carbon/silica composite material on the surface of Mesophase graphite powder (MGP).The anode materials in different MGP measurement experiment by
coin cell charge/discharge test and cycle life test for analyzing their traits of cell charge/discharge and cycle life. As a result, the more MGP we increase, there is much capacitance. Besides, it can reach to the optimum condition. When doing experiment in optimum condition, we can increase MGP capacitance from 320 mAh/g to 420 mAh/g. In conclusion, the anode materials still maintain in constant capacitance after 0.1 C fifty cell charge/discharge cycles.
參考資料
1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
3. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
4. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
5. C.-G. Wu, T. Bein, Chem. Mater., 1994, 6, 1109.
6. (a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996, 12, 6202.
(b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467.
7. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
8. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem. Commun., 1995, 1617.
9. J. H. Kim et al. Applied Catalysis B: Environmental, 2009, 88, 368.
10. R. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
11. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63.
12. M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996, 100, 9906.
13. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
14. J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 1995, 2231.
15. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
16. T. F. Todros, Surfactants, Academic Press: London, 1984.
17. B. Lindman and H. Wennerström, Micelles: Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
18. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
19. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264.
20. A. Knop, L. A. Pilato Phenolic Resins-Chemistry, Applications and Performance, Springer-Verlag, Berlin, 1985.
21. A. Knop, W. Scheib, Chemistry and Application of Phenolic Resins, Springer-Verlag, New York, 1979.
22. S. R. Sandler, W. Karo, Polymer Synthesis, 2nd ed., Vol. 2, Academic Boston 1992.
23. E. W. Orrell, R.Burns, Plasti Polym., 469, 1968.
24. G. R.Hatfield G. E.Maciel, Macromolecules, 1987, 20, 608-615.
25. R. K. Iler, the Chemistry of Silica, John Wiley, New York, 1979.
26. O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier,P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, and G. D. Stukey .Chem. Mater., 1994, 6, 1176.
27. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids, 1985, 70, 301.
28. J. Salmi, J. P. Bonino, R. S. Bes, J. Mater. Sci. 2000, 35, 1347.
29. E. Wackelgard, J. Phys.: Condens. Matter, 1996, 8, 5125.
30. P. J. Sebastian, J. Quintana, F. Avila, Sol. Energy Mater. Sol. Cells, 1997, 45, 65.
31. Y. Mastai, S. Polarz, M. Antonietti, Adv. Funct. Mater., 2002,
12, 197.
32. J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr., 1986, 352, 3.
33. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky,H. J. Shin and Ryong Ryoo, Nature, 2000, 408, 449.
34. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredirckson, B. F. Chemlka, G. D. Stucky, Science, 1998, 279, 548.
35. M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B, 2003, 107, 2205.
36. S. H. Joo, R. Ryoo, M. Kruk and M. Jaroniec, J. Phys. Chem. B, 2002, 106, 4640.
37. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater., 2001, 13, No. 9, 677.
38. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
39. R. Ryoo, S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu and O. Terasaki, manuscript in preparation.
40. (a) H. Tang, Y. Ren, B. Yue, S. Yan, H. He, J. Mol. Catal. A: Chem., 2006, 260, 121.
41. (b) Y. Gu, X. Zhao, G. Zhang, H. Ding, Y. Shan, Appl. Catal. A: Gen., 2007, 328, 150.
42. (c) K. Bachari, O. Cherifi, Catal. Commun., 2006, 7, 926.
43. C.-Y. Lua, H.-H. Tseng, M.-Y. Wey, T.-W. Hsueh, Chemical Engineering Journal, 2009, 145, 461.
44. S. Y. Chuang, J. S. Dennis, A. N. Hayhurst, S. A. Scott, Proceedings of the Combustion Institute, 2009, 32, 2633.
45. J. B. Goodenough, M. M. Thackeray, W. L. F. David and P. G. Bruce,
Revue de Chimic minerale, 1984, 21, 435.
46. 陳致成、劉茂煌、陳金銘, 工業材料, 2003, 203, 98.
47. 楊家諭、鄭程鴻、邱永城, 工業材料, 1996, 110, 66.
48. 林振華、林振富, 充電式鋰離子電池-材料與應用, 全華科技圖書股份有限公司, 台北市.2001, 8-1.
49. 楊模樺, 化工技術, 2003, 第11 卷第8 期, 120.
50. 陳金銘, 工業材料, 1997, 133, 85.
51. H. Shi, J. Barker, M. Y. Saidi and R. Koksbang, J. Electrochem. Soc, 1996, 143, 3466.
52. C. E. Newnham, S. Rinne and N. Scholey, J. Power Sources, 1995, 54, 516.
53. J.D. Bernal, Proc, Roy. Soc, 1924, A106, 749.
54. 費定國、李曰琪, 工業材料, 2000, 165, 152.
55. J. R. Dahn, A. K. Sleigh, H. Shi, J. N. Reimers, Q. Zhong, and B. M. Wa, Electrochim Acta, 1993, 38, 1179.
56. 劉文義, 台灣地區鋰電池產業競爭策略之研究-以A 公司發展負極材料為例, 國立中山大學管理學院高階經營碩士學程碩士在職專班(2002)碩士論文.
57. 周兆玲、翁炳志, 工業材料, 2001, 173, 157.
58. 許朝陽,無電鍍法製備錫碳複合負極材料於鋰二次電池特性研究,國立台南大學,材料科學研究所 (2007)碩士論文p42-46.
59. P. Harriott, A. T. Y. Chang, Kinetics of spent activated carbon regeneration. AICHE Journal, 1988, 34, 1656.
60. S. Brunauer, L. S. Deming, W. S. Deming and E. T. Teller, “On a theory of the van der waals adsorption of gases”, J. Am. Chem. Soc., 1940, 62, 1723.
61. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, Ralph K. Iler, Wiley-Interscience, New York, June, 1979.