| 研究生: |
陳怡廷 Chen, Yi-Ting |
|---|---|
| 論文名稱: |
溫度和酸鹼度對類三碳鏈離子對雙親分子 /膽固醇混合系統形成之帶正電陰陽離子液胞特性的影響 Effects of Temperature and pH on Characteristics of Positively Charged Catanionic Vesicles Fabricated from a Mixed Pseudotriple-Chained Ion Pair Amphiphile/Cholesterol System |
| 指導教授: |
張鑑祥
Chang, Chien-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 陰陽離子液胞 、膽固醇 、環境應答特性 、離子對雙親分子 、液胞 |
| 外文關鍵詞: | Catanionic vesicle, Cholesterol, Environmental responsive characteristics, Ion pair amphiphile, Vesicle |
| 相關次數: | 點閱:195 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以類三碳鏈離子對雙親分子dihexadecyldimethylammonium-dodecylsulfate(DHDA-DS)為主材料,添加不同比率的膽固醇製備出帶正電的陰陽離子液胞,探討添加的膽固醇對所形成之陰陽離子液胞物理特性及雙層膜結構流動性的影響。此外,藉由改變液胞分散液的酸鹼度及溫度,分析液胞的環境應答特性。酸鹼應答實驗是將液胞分散液分別調整至pH 4.0、5.0、6.0、7.4及8.0,分析液胞的物理特性及雙層膜結構中分子的排列特性。溫度應答實驗是藉由升高液胞分散液的溫度,探討液胞雙層膜結構之相轉移溫度及分子排列的變化。最後以溶血實驗、細胞存活度實驗評估液胞應用的可行性。
實驗結果顯示DHDA-DS/膽固醇混合系統可形成帶正電的液胞,當膽固醇含量達40 mol%後,能大幅提升液胞的物理穩定性。藉由傅立葉轉換紅外光譜法分析液胞中整體分子碳鏈的自由度,顯示含少量膽固醇之系統中的分子碳鏈自由度較小,推測膽固醇的疏水性固醇環結構限制了鄰近碳鏈的自由度,即膽固醇在雙層膜結構中的作用以凝縮效應為主。隨著膽固醇含量持續增加,可能因膽固醇的存在造成液胞組成分子間不可忽略的空隙,使得整體的分子碳鏈自由度增加,此為膽固醇之失序效應。以上結果可反映至不同膽固醇含量之液胞雙層膜結構的相轉移溫度。
溫度應答分析顯示,每一組成下之液胞的粒徑分布不隨溫度而有明顯變化。利用動態光散射法、螢光偏極化法及傅立葉紅外光譜法評估相轉移溫度,發現含有10、20 mol%膽固醇的液胞系統有較高的相轉移溫度。由於少量膽固醇的添加對雙層膜結構的影響以凝縮效應為主,相轉移溫度因而較高。高膽固醇含量對雙層膜結構具失序效應,分子的碳鏈自由度較高,相轉移溫度因而較低。
由DHDA-DS/膽固醇混合系統製備出的液胞分散液pH值約為6.0,接近所使用純水的pH值。當分散液的pH值調整至4.0或5.0時,液胞的界面電位微幅上升,但粒徑分布幾乎沒有改變。由於液胞間有較強的靜電排斥作用能避免聚集,使pH 4.0~6.0範圍下的粒徑分布不隨pH值而改變。當環境pH值為7.4時,液胞的界面電位明顯下降,出現少量較大粒徑的聚集體,液胞的穩定性少於三天,推測是液胞間微弱的排斥作用造成聚集。當液胞分散液的pH值調整至8.0時,液胞立即不穩定。以上特性顯示此液胞系統適用於鹼性環境的藥物釋放應用。此外,利用螢光偏極化法及傅立葉紅外光譜法分析不同酸鹼環境下液胞中分子的排列情形,發現液胞雙層膜結構中分子的碳鏈自由度幾乎不受環境酸鹼度影響。
為了評估液胞應用的可行性,以人類非小肺癌細胞株及正常人類上皮細胞進行細胞存活率檢測,並以溶血實驗分析液胞對紅血球的影響,結果顯示低濃度的液胞分散液具可接受的細胞毒性及溶血率。此外,高膽固醇含量之液胞不僅有穩定性佳的特性,生物毒性也較低。
In this study, pseudo triple-chained ion pair amphiphile, dihexadecyldimethylammonium-dodecylsulfate (DHDA-DS), was used as the main material to fabricate positively charged catanionic vesicles with the addition of various contents of cholesterol. The effects of added cholesterol on physical properties and bilayer structure fluidity of the catanionic vesicles were then investigated. Besides, environment-responsive characteristics of the vesicles were analyzed by changing the pH and temperature of the vesicle dispersions. pH-responsive experiments were performed by adjusting the vesicle dispersions to 4.0, 5.0, 6.0, 7.4, and 8.0, respectively, and physical properties of the vesicles and molecular packing characteristics of the bilayer structures were analyzed. Thermo-responsive experiments were carried out by increasing temperature of the vesicle dispersions to evaluate the phase transition temperature and molecular packing change of the vesicular bilayer structures. Hemolysis experiments and cytotoxicity tests were adopted to evaluate feasibility of the vesicle application.
The experimental results indicated that positively charged catanionic vesicles could be fabricated from the mixed DHDA-DS/cholesterol system. When the cholesterol content was higher than 40 mol%, physical stability of the vesicles could be significantly enhanced. The motion freedom of whole molecular hydrocarbon chains in the vesicles was analyzed by FTIR, and less motion freedom of the molecular hydrocarbon chains was found for the systems with low cholesterol contents. This is probably because the hydrophobic and rigid sterol ring of cholesterol restrained the motion freedom of neighboring hydrocarbon chains, and the influence of cholesterol on the bilayer structures was dominated by the condensing effect. As cholesterol content was increased, the space between the vesicle-forming molecules probably induced by cholesterol could not be ignored, resulting in increased motion freedom of the whole molecular hydrocarbon chains. This is the disordering effect of cholesterol. The above results were reflected in the phase transition temperature of the vesicular bilayer structures with different cholesterol contents.
Thermo-responsive analysis indicated that the size distributions of the vesicles containing various cholesterol contents were not significantly affected by temperature changes. By using DLS, FP, and FTIR methods, one was able to evaluate the phase transition temperatures and higher phase transition temperatures were found for the vesicles containing 10 or 20 mol% cholesterol. The influence of cholesterol with low contents on bilayer structures was dominated by the condensing effect, resulting in the higher phase transition temperatures. The influence of cholesterol with high contents on bilayer structures was dominated by the disordering effect, and thus the motion freedom of molecular hydrocarbon chains became high, leading to lower phase transition temperatures.
The pH of the vesicle dispersions fabricated from DHDA-DS/cholesterol mixtures was about 6.0, which was close to pH of pure water. When the pH of the vesicle dispersions was adjusted to 4.0 or 5.0, zeta potential of the vesicles was slightly increased, but the vesicule size distributions were almost the same. Since stronger electrostatic repulsion between the vesicles could prevent aggregation, the vesicle size distributions in the pH range of 4.0~6.0 were not changed with pH variation. As the pH was adjusted to 7.4, zeta potential of the vesicles was significantly decreased, and some large aggregates appeared with the vesicle stability less than 3 days. The aggregation was probably caused by weak repulsion between the vesicles.
When the pH of the vesicle dispersions was adjusted to 8.0, vesicles immediately became unstable. The above results suggested that this vesicle system was suitable for the drug release application in alkaline environment. In addition, the molecular packing in the vesicles at different pH conditions was investigated by FP and FTIR analyses. It was found that the motion freedom of molecular hydrocarbon chains in the vesicular bilayer structures was hardly affected by pH of the environment.
In order to evaluate the application feasibility of the vesicles, cell viability was examined with human non-small lung carcinoma cell line and human bronchial epithelial cells, and the effect of the vesicles on red blood cells was analyzed by hemolysis experiment. The results showed that the cytotoxicity and hemolysis ratio were acceptable for the vesicle dispersions with low concentrations. In addition, the vesicles with high cholesterol contents possessed not only high stability but also low cytotoxicity.
Aghdam, M. A., Bagheri, R., Mosafer, J., Baradaran, B., Hashemzaei, M., Baghbanzadeh, A., de la Guardia, M., Mokhtarzadeh, A. (2019). Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. Journal of Controlled Release, 315, 1-22.
Al Sawaftah, N. M., & Husseini, G. A. (2020). Ultrasound-mediated drug delivery in cancer therapy: A Review. Journal of Nanoscience and Nanotechnology, 20(12), 7211-7230.
Aleskndrany, A., & Sahin, I. (2020). The effects of Levothyroxine on the structure and dynamics of DPPC liposome: FTIR and DSC studies. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1862(6), 183245.
Allen, T., & Cleland, L. (1980). Serum-induced leakage of liposome contents. Biochimica et Biophysica Acta (BBA)-Biomembranes, 597(2), 418-426.
Ang, I. A. (2011). 含對稱雙十二碳鏈離子對雙親分子及帶負電脂質之陰陽離子液胞的物理穩定性及維他命 E 醋酸酯包覆效率. 成功大學化學工程學系學位論文, 1-94.
Anyarambhatla, G. R., & Needham, D. (1999). Enhancement of the phase transition permeability of DPPC liposomes by incorporation of MPPC: a new temperature-sensitive liposome for use with mild hyperthermia. Journal of Liposome Research, 9(4), 491-506.
Aramaki, Y., Takano, S., & Tsuchiya, S. (1999). Induction of apoptosis in macrophages by cationic liposomes. FEBS Letters, 460(3), 472-476.
Bach, D., & Wachtel, E. (2003). Phospholipid/cholesterol model membranes: formation of cholesterol crystallites. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1610(2), 187-197.
Balazs, D. A., & Godbey, W. (2011). Liposomes for use in gene delivery. Journal of Drug Delivery, 2011.
Bernsdorff, C., & Winter, R. (2003). Differential properties of the sterols cholesterol, ergosterol, β-sitosterol, trans-7-dehydrocholesterol, stigmasterol and lanosterol on DPPC bilayer order. The Journal of Physical Chemistry B, 107(38), 10658-10664.
Bhattacharya, S., De, S., & Subramanian, M. (1998). Synthesis and vesicle formation from hybrid bolaphile/amphiphile ion-pairs. Evidence of membrane property modulation by molecular design. The Journal of Organic Chemistry, 63(22), 7640-7651.
Bhattacharya, S., & Haldar, S. (2000). Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain–backbone linkage. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1467(1), 39-53.
Blandamer, M. J., Briggs, B., Cullis, P. M., Rawlings, B. J., & Engberts, J. B. (2003). Vesicle-cholesterol interactions: Effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC. Physical Chemistry Chemical Physics, 5(23), 5309-5312.
Blanzat, M., Perez, E., Rico-Lattes, I., & Lattes, A. (1999). Synthesis and anti-HIV activity of catanionic analogs of galactosylceramide. New Journal of Chemistry, 23(11), 1063-1065.
Bloom, M., Evans, E., & Mouritsen, O. G. (1991). Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Quarterly Reviews of Biophysics, 24(3), 293-397.
Bloom, M., & Mouritsen, O. (1995). The evolution of membranes. Handbook of Biological Physics, 1, 65-95.
Bui, T. T., Suga, K., & Umakoshi, H. (2016). Roles of sterol derivatives in regulating the properties of phospholipid bilayer systems. Langmuir, 32(24), 6176-6184.
Campbell, R. B., Balasubramanian, S. V., & Straubinger, R. M. (2001). Phospholipid-cationic lipid interactions: influences on membrane and vesicle properties. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1512(1), 27-39.
Casal, H. L., & Mantsch, H. H. (1984). Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 779(4), 381-401.
Cevher, E., Sezer, A. D., & Çağlar, E. (2012). Gene delivery systems: Recent progress in viral and non-viral therapy. Recent Advances in Novel Drug Carrier Systems, 437-470.
Chang, W.-H., Chuang, Y.-T., Yu, C.-Y., Chang, C.-H., & Yang, Y.-M. (2017). Effects of sterol-like additives on phase transition behavior of ion-pair amphiphile bilayers. Journal of Oleo Science, 66(11), 1229-1238.
Chen, L., Liang, R., Wang, Y., Yokoyama, W., Chen, M., & Zhong, F. (2018). Characterizations on the stability and release properties of β-ionone loaded thermosensitive liposomes (TSLs). Journal of Agricultural and Food Chemistry, 66(31), 8336-8345.
Cheng, C.-Y., Song, J., Pas, J., Meijer, L. H., & Han, S. (2015). DMSO induces dehydration near lipid membrane surfaces. Biophysical Journal, 109(2), 330-339.
Cheung, C. C., Monaco, I., Kostevšek, N., Franchini, M. C., & Al-Jamal, W. T. (2021). Nanoprecipitation preparation of low temperature-sensitive magnetoliposomes. Colloids and Surfaces B: Biointerfaces, 198, 111453.
Chien, C., Yeh, S., Yang, Y., Chang, C., & Maa, J. (2002). Formation and encapsulation of catanionic vesicles. J. Chin. Colloid Interface Soc., 24, 31-45.
Chou, T.-H., Liang, C.-H., Lee, Y.-C., & Yeh, L.-H. (2014). Effects of lipid composition on physicochemical characteristics and cytotoxicity of vesicles composed of cationic and anionic dialkyl lipids. Physical Chemistry Chemical Physics, 16(4), 1545-1553.
Chung, M.-H., & Chung, Y.-C. (2002). Polymerized ion pair amphiphile that shows remarkable enhancement in encapsulation efficiency and very slow release of fluorescent markers. Colloids and Surfaces B: Biointerfaces, 24(2), 111-121.
Chung, M.-H., Park, C., Chun, B. C., & Chung, Y.-C. (2004). Polymerized ion pair amphiphile vesicles with pH-sensitive transformation and controlled release property. Colloids and Surfaces B: Biointerfaces, 34(3), 179-184.
Chung, M.-H., Park, M.-J., Chun, B. C., & Chung, Y.-C. (2003). Encapsulation and permeation properties of the polymerized ion pair amphiphile vesicle that has an additional carboxyl group on anionic chain. Colloids and Surfaces B: Biointerfaces, 28(2-3), 83-93.
Cortesi, R., Esposito, E., Menegatti, E., Gambari, R., & Nastruzzi, C. (1996). Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA. International Journal of Pharmaceutics, 139(1-2), 69-78.
De Oliveira, M. C., Fattal, E., Couvreur, P., Lesieur, P., Bourgaux, C., Ollivon, M., & Dubernet, C. (1998). pH-sensitive liposomes as a carrier for oligonucleotides: a physico-chemical study of the interaction between DOPE and a 15-mer oligonucleotide in quasi-anhydrous samples. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1372(2), 301-310.
Dhawan, V. V., & Nagarsenker, M. S. (2017). Catanionic systems in nanotherapeutics–Biophysical aspects and novel trends in drug delivery applications. Journal of Controlled Release, 266, 331-345.
Dicheva, B. M., ten Hagen, T. L., Schipper, D., Seynhaeve, A. L., van Rhoon, G. C., Eggermont, A. M., & Koning, G. A. (2014). Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomes. Journal of Controlled Release, 195, 37-48.
El-Sawy, H. S., Al-Abd, A. M., Ahmed, T. A., El-Say, K. M., & Torchilin, V. P. (2018). Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS nano, 12(11), 10636-10664.
El-Sayed, M., Guion, T., & Fayer, M. (1986). Effect of cholesterol on viscoelastic properties of dipalmitoylphosphatidylcholine multibilayers as measured by a laser-induced ultrasonic probe. Biochemistry, 25(17), 4825-4832.
Fan, Y., Chen, C., Huang, Y., Zhang, F., & Lin, G. (2017). Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloids and Surfaces B: Biointerfaces, 151, 19-25.
Fattal, E., Couvreur, P., & Dubernet, C. (2004). “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Advanced Drug Delivery Reviews, 56(7), 931-946.
Finkelstein, A., & Cass, A. (1967). Effect of cholesterol on the water permeability of thin lipid membranes. Nature, 216(5116), 717-718.
Fischer, A., Hebrant, M., & Tondre, C. (2002). Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylammonium tosylate/water system. Journal of Colloid and Interface Science, 248(1), 163-168.
Fouladi, F., Steffen, K. J., & Mallik, S. (2017). Enzyme-responsive liposomes for the delivery of anticancer drugs. Bioconjugate chemistry, 28(4), 857-868.
Fukuda, H., Kawata, K., Okuda, H., & Regen, S. L. (1990). Bilayer-forming ion pair amphiphiles from single-chain surfactants. Journal of the American Chemical Society, 112(4), 1635-1637.
Gaber, M. H., Hong, K., Huang, S. K., & Papahadjopoulos, D. (1995). Thermosensitive sterically stabilized liposomes: formulation and in vitro studies on mechanism of doxorubicin release by bovine serum and human plasma. Pharmaceutical Research, 12(10), 1407-1416.
Gargallo, L., & Radic, D. (2009). Physicochemical behavior and supramolecular organization of polymers: Springer Science & Business Media.
Gregoriadis, G. (1988). Liposomes as a drug delivery system: optimization studies. Biotechnological Applications of Lipid Microstructures, 151-159.
Gunarsa, C. A. (2010). 含雙十六碳鏈磷酸鹽之陰陽離子液胞的物理穩定性及維他命 E 包覆效率. 成功大學化學工程學系學位論文, 1-100.
Guo, H., Chen, W., Sun, X., Liu, Y.-N., Li, J., & Wang, J. (2015). Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field. Carbohydrate Polymers, 118, 209-217.
Guo, W., & Hamilton, J. A. (1995). A multinuclear solid-state NMR study of phospholipid-cholesterol interactions. Dipalmitoylphosphatidylcholine-cholesterol binary system. Biochemistry, 34(43), 14174-14184.
Hąc-Wydro, K., Wydro, P., & Dynarowicz-Łątka, P. (2005). Interactions between dialkyldimethylammonium bromides (DXDAB) and sterols—a monolayer study. Journal of Colloid and Interface Science, 286(2), 504-510.
Havlíková, M., Szabová, J., Jugl, A., Mravcová, L., Chang, C.-H., Huang, P.-S., Mravec, F. (2020). Study of cholesterol’s effect on the properties of catanionic vesicular systems: Comparison of light-scattering results with ultrasonic and fluorescence spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 607, 125526.
Havlíková, M., Szabová, J., Mravcová, L., Venerová, T., Chang, C.-H., Pekař, M., Jugl, A., Mravec, F. (2021). Cholesterol effect on membrane properties of cationic ion pair amphiphile vesicles at different temperatures. Langmuir, 37(7), 2436-2444.
Heimburg, T. (2000). A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition. Biophysical Journal, 78(3), 1154-1165.
Hirano, K., Fukuda, H., & Regen, S. L. (1991). Polymerizable ion-paired amphiphiles. Langmuir, 7(6), 1045-1047.
Holmberg, K., Shah, D. O., & Schwuger, M. J. (2002). Handbook of applied surface and colloid chemistry (Vol. 1): Wiley-Blackwell.
Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self- assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72, 1525-1568.
Jain, R., Pradhan, R., Hejmady, S., Singhvi, G., & Dubey, S. K. (2021). Fluorescence-based method for sensitive and rapid estimation of chlorin e6 in stealth liposomes for photodynamic therapy against cancer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 244, 118823.
Jedlovszky, P., & Mezei, M. (2003). Effect of cholesterol on the properties of phospholipid membranes. 2. Free energy profile of small molecules. The Journal of Physical Chemistry B, 107(22), 5322-5332.
Jovanović, A. A., Balanč, B. D., Ota, A., Ahlin Grabnar, P., Djordjević, V. B., Šavikin, K. P., . . . Poklar Ulrih, N. (2018). Comparative effects of cholesterol and β‐sitosterol on the liposome membrane characteristics. European Journal of Lipid Science and Technology, 120(9), 1800039.
Jubeh, T. T., Barenholz, Y., & Rubinstein, A. (2004). Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes. Pharmaceutical Research, 21(3), 447-453.
Jurašin, D. D., Šegota, S., Čadež, V., Selmani, A., & Sikirć, M. D. (2017). Recent advances in catanionic mixtures. Application and Characterization of Surfactants, 33-73.
Kaler, E. W., Murthy, A. K., Rodriguez, B. E., & Zasadzinski, J. (1989). Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science, 245(4924), 1371-1374.
Kanamala, M., Wilson, W. R., Yang, M., Palmer, B. D., & Wu, Z. (2016). Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials, 85, 152-167.
Kawakami, K., Nishihara, Y., & Hirano, K. (1999). Rigidity of lipid membranes detected by capillary electrophoresis. Langmuir, 15(6), 1893-1895.
Keough, K., & Davis, P. (1979). Gel to liquid-crystalline phase transitions in water dispersions of saturated mixed-acid phosphatidylcholines. Biochemistry, 18(8), 1453-1459.
Kilian, G. (2011). Development and testing of liposome encapsulated cyclic dipeptides. (Doctoral dissertation)
Kondo, Y., Uchiyama, H., Yoshino, N., Nishiyama, K., & Abe, M. (1995). Spontaneous vesicle formation from aqueous solutions of didodecyldimethylammonium bromide and sodium dodecyl sulfate mixtures. Langmuir, 11(7), 2380-2384.
Kong, G., Anyarambhatla, G., Petros, W. P., Braun, R. D., Colvin, O. M., Needham, D., & Dewhirst, M. W. (2000). Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Research, 60(24), 6950-6957.
Kong, G., Braun, R. D., & Dewhirst, M. W. (2001). Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Research, 61(7), 3027-3032.
Koning, G. A., Eggermont, A. M., Lindner, L. H., & ten Hagen, T. L. (2010). Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharmaceutical Research, 27(8), 1750-1754.
Kranenburg, M., & Smit, B. (2005). Phase behavior of model lipid bilayers. The Journal of Physical Chemistry B, 109(14), 6553-6563.
Kuo, A.-T., & Chang, C.-H. (2014). Cholesterol-induced condensing and disordering effects on a rigid catanionic bilayer: A molecular dynamics study. Langmuir, 30(1), 55-62.
Kuo, A.-T., & Chang, C.-H. (2016). Recent strategies in the development of catanionic vesicles. Journal of Oleo Science, ess15249.
Kuo, A.-T., Tu, C.-L., Yang, Y.-M., & Chang, C.-H. (2018). Enhanced physical stability of mixed ion pair amphiphile/double-chained cationic surfactant vesicles in the presence of cholesterol. Journal of Oleo Science, ess18008.
Lasic, D. D. (1993). Liposomes: from physics to applications. Elsevier Science Limited.
Lasic, D. D., & Papahadjopoulos, D. (1996). Liposomes and biopolymers in drug and gene delivery. Current Opinion in Solid State and Materials Science, 1(3), 392-400.
Lee, W.-H., Tang, Y.-L., Chiu, T.-C., & Yang, Y.-M. (2015). Synthesis of ion-pair amphiphiles and calorimetric study on the gel to liquid-crystalline phase transition behavior of their bilayers. Journal of Chemical & Engineering Data, 60(4), 1119-1125.
Lee, Y., & Thompson, D. (2017). Stimuli‐responsive liposomes for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(5), e1450.
Lewis, R. N., & McElhaney, R. N. (2013). Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828(10), 2347-2358.
Li, L., ten Hagen, T. L., Schipper, D., Wijnberg, T. M., van Rhoon, G. C., Eggermont, A. M., Koning, G. A. (2010). Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. Journal of Controlled Release, 143(2), 274-279.
Liang, C.-H., & Chou, T.-H. (2009). Effect of chain length on physicochemical properties and cytotoxicity of cationic vesicles composed of phosphatidylcholines and dialkyldimethylammonium bromides. Chemistry and Physics of Lipids, 158(2), 81-90.
Liu, Y.-S., Wen, C.-F., & Yang, Y.-M. (2012). Development of ethosome-like catanionic vesicles for dermal drug delivery. Journal of the Taiwan Institute of Chemical Engineers, 43(6), 830-838.
Llères, D., Weibel, J. M., Heissler, D., Zuber, G., Duportail, G., & Mély, Y. (2004). Dependence of the cellular internalization and transfection efficiency on the structure and physicochemical properties of cationic detergent/DNA/liposomes. The Journal of Gene Medicine: A Cross‐disciplinary Journal for Research on the Science of Gene Transfer and its Clinical Applications, 6(4), 415-428.
Lopes, S., Neves, C., Eaton, P., & Gameiro, P. (2011). Cardiolipin, a key component to mimic the e. coli bacterial membrane in model system Membranes. Biophysical Journal, 100(3), 626a.
Mannock, D. A., Lewis, R. N., & McElhaney, R. N. (2010). A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1798(3), 376-388.
Manohar, C., & Narayanan, J. (2012). Average packing factor approach for designing micelles, vesicles and gel phases in mixed surfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 403, 129-132.
Mantsch, H. H. (1984). Biological applications of Fourier transform infrared spectroscopy: a study of phase transitions in biomembranes. Journal of Molecular Structure, 113, 201-212.
Marsh, D. (1990). CRC handbook of lipid bilayers.
Massey, J. B. (2001). Interfacial properties of phosphatidylcholine bilayers containing vitamin E derivatives. Chemistry and Physics of Lipids, 109(2), 157-174.
McMullen, T. P., Lewis, R. N., & McElhaney, R. N. (2000). Differential scanning calorimetric and fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes. Biophysical Journal, 79(4), 2056-2065.
McMullen, T. P., Lewis, R. N., & McElhaney, R. N. (2009). Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788(2), 345-357.
Mel'nikova, Y. S., Mel'nikov, S. M., & Löfroth, J.-E. (1999). Physico-chemical aspects of the interaction between DNA and oppositely charged mixed liposomes. Biophysical Chemistry, 81(2), 125-141.
Merino-Montero, S., Montero, M. T., & Hernández-Borrell, J. (2006). Effects of lactose permease of Escherichia coli on the anisotropy and electrostatic surface potential of liposomes. Biophysical Chemistry, 119(1), 101-105.
Michel, N., Fabiano, A.-S., Polidori, A., Jack, R., & Pucci, B. (2006). Determination of phase transition temperatures of lipids by light scattering. Chemistry and Physics of Lipids, 139(1), 11-19.
Misra, S. K., Biswas, J., Kondaiah, P., & Bhattacharya, S. (2013). Gene transfection in high serum levels: case studies with new cholesterol based cationic gemini lipids. PloS One, 8(7), e68305.
Morgan, D., Larvin, V. L., & Pearson, J. D. (1989). Biochemical characterisation of polycation-induced cytotoxicity to human vascular endothelial cells. Journal of Cell Science, 94(3), 553-559.
Mouritsent, O. G., & Jørgensen, K. (1995). Micro-, nano-and meso-scale heterogeneity of iipid bilayers and its influence on macroscopic membrane properties. Molecular Membrane Biology, 12(1), 15-20.
Mourtas, S., Michanetzis, G. P., Missirlis, Y. F., & Antimisiaris, S. G. (2009). Haemolytic activity of liposomes: effect of vesicle size, lipid concentration and polyethylene glycol-lipid or arsonolipid incorporation. Journal of Biomedical Nanotechnology, 5(4), 409-415.
New. (1990). Practical Approach, ed. RRC New. In: Oxford University Press, New York.
Panda, A., Possmayer, F., Petersen, N., Nag, K., & Moulik, S. (2005). Physico-chemical studies on mixed oppositely charged surfactants: their uses in the preparation of surfactant ion selective membrane and monolayer behavior at the air water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 264(1-3), 106-113.
Papahadjopoulos, D., Jacobson, K., Nir, S., & Isac, I. (1973). Phase transitions in phospholipid vesicles fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochimica et Biophysica Acta (BBA)-Biomembranes, 311(3), 330-348.
Pata, V., & Dan, N. (2005). Effect of membrane characteristics on phase separation and domain formation in cholesterol-lipid mixtures. Biophysical Journal, 88(2), 916-924.
Pinto, O. A., Bouchet, A. M., Frias, M., & Disalvo, E. A. (2014). Microthermodynamic interpretation of fluid states from FTIR measurements in lipid membranes: A Monte Carlo study. The Journal of Physical Chemistry B, 118(35), 10436-10443.
Pucci, C., Scipioni, A., Diociaiuti, M., La Mesa, C., Pérez, L., & Pons, R. (2015). Catanionic vesicles and DNA complexes: a strategy towards novel gene delivery systems. RSC Advances, 5(99), 81168-81175.
Róg, T., Pasenkiewicz-Gierula, M., Vattulainen, I., & Karttunen, M. (2009). Ordering effects of cholesterol and its analogues. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788(1), 97-121.
Sedaghatkish, A., Rezaeian, M., Heydari, H., Ranjbar, A. M., & Soltani, M. (2020). Acoustic streaming and thermosensitive liposomes for drug delivery into hepatocellular carcinoma tumor adjacent to major hepatic veins; an acoustics–thermal–fluid-mass transport coupling model. International Journal of Thermal Sciences, 158, 106540.
Šegota, S. (2006). Spontaneous formation of vesicles. Advances in Colloid and Interface Science, 121(1-3), 51-75.
Šegota, S., Težak, Đ., & Talmon, Y. (2005). New catanionic mixtures of didodecyldimethylammonium bromide/sodium dodecylbenzene sulfonate/water with special reference to spontaneous formation of vesicles. II. Size and shape analysis by SAXS, light scattering, cryo‐TEM, and light microscopy. Soft Materials, 3(2-3), 51-69.
Shome, A., Kar, T., & Das, P. K. (2011). Spontaneous formation of biocompatible vesicles in aqueous mixtures of amino acid‐based cationic surfactants and SDS/SDBS. ChemPhysChem, 12(2), 369-378.
Soussan, E., Mille, C., Blanzat, M., Bordat, P., & Rico-Lattes, I. (2008). Sugar-derived tricatenar catanionic surfactant: synthesis, self-assembly properties, and hydrophilic probe encapsulation by vesicles. Langmuir, 24(6), 2326-2330.
Subczynski, W. K., Hyde, J. S., & Kusumi, A. (1989). Oxygen permeability of phosphatidylcholine--cholesterol membranes. Proceedings of the National Academy of Sciences, 86(12), 4474-4478.
Subczynski, W. K., Wisniewska, A., Yin, J.-J., Hyde, J. S., & Kusumi, A. (1994). Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry, 33(24), 7670-7681.
Tan, Y., Zhu, Y., Zhao, Y., Wen, L., Meng, T., Liu, X., Hu, F. (2018). Mitochondrial alkaline pH-responsive drug release mediated by Celastrol loaded glycolipid-like micelles for cancer therapy. Biomaterials, 154, 169-181.
Thierry, A. R., Rahman, A., & Dritschilo, A. (1992). Liposomal delivery as a new approach to transport antisense oligonucleotides. Gene Regulation: Biology of Antisense RNA and DNA, 147-161.
Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug discovery, 4(2), 145-160.
Van Hoogevest, P., & Fahr, A. (2019). Phospholipids in cosmetic carriers. Nanocosmetics, 95-140.
Vautrin, C., Zemb, T., Schneider, M., & Tanaka, M. (2004). Balance of pH and ionic strength influences on chain melting transition in catanionic vesicles. The Journal of Physical Chemistry B, 108(23), 7986-7991.
Vist, M. R., & Davis, J. H. (1990). Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: deuterium nuclear magnetic resonance and differential scanning calorimetry. Biochemistry, 29(2), 451-464.
Voinea, M., & Simionescu, M. (2002). Designing of ‘intelligent’liposomes for efficient delivery of drugs. Journal of Cellular and Molecular Medicine, 6(4), 465-474.
Wang, C., Tang, S., Huang, J., Zhang, X., & Fu, H. (2002). Transformation from precipitates to vesicles in mixed cationic and anionic surfactant systems. Colloid and Polymer Science, 280(8), 770-774.
Yatvin, M. B., Weinstein, J. N., Dennis, W. H., & Blumenthal, R. (1978). Design of liposomes for enhanced local release of drugs by hyperthermia. Science, 202(4374), 1290-1293.
Yokoyama, S., Inagaki, A., Imura, T., Ohkubo, T., Tsubaki, N., Sakai, H., & Abe, M. (2005). Membrane properties of cationic liposomes composed of dipalmitoylphosphatidylcholine and dipalmityldimethylammonium bromide. Colloids and Surfaces B: Biointerfaces, 44(4), 204-210.
Yu, W.-Y., Yang, Y.-M., & Chang, C.-H. (2005). Cosolvent effects on the spontaneous formation of vesicles from 1: 1 anionic and cationic surfactant mixtures. Langmuir, 21(14), 6185-6193.
Yuba, E. (2020). Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. Journal of Materials Chemistry B, 8(6), 1093-1107.
王鈺婷. (2015). 帶負電陰陽離子液胞的物化特性及維他命 E 醋酸酯包覆效率-離子對雙親分子碳鏈結構的影響. 成功大學化學工程學系學位論文, 1-117.
吳芷容. (2008). 利用帶正電的陰陽離子液胞做為 DNA 載體之可行性的研究. 成功大學化學工程學系學位論文, 1-143.
呂奇達. (2005). 帶正電的陰陽離子液胞與 DNA 之結合行為的探討. 成功大學化學工程學系學位論文, 1-110.
李承軒. (2015). 帶正電陰陽離子液胞及其與 DNA 形成之複合物的物理穩定性. 成功大學化學工程學系學位論文, 1-113.
李家如. (2011). 含不對稱碳鏈離子對雙親分子及帶負電脂質之陰陽離子液胞的物理穩定性及維他命 E 醋酸酯包覆效率. 成功大學化學工程學系學位論文, 1-88.
林冠豪. (2004). 帶電的陰陽離子液胞之製備及物理穩定性研究. 成功大學化學工程學系學位論文, 1-86.
洪振益. (2009). 溫度效應對帶電陰陽離子液胞釋放行為的影響. 成功大學化學工程學系學位論文, 1-144.
張維芬. (2012). 添加劑對雙十六碳鏈離子對雙親分子形成之陰陽離子液胞物化特性的影響. 成功大學化學工程學系學位論文, 1-106.
陳孟真. (2017). 膽固醇的添加對於碳鏈長度為 16-16-12 之三碳鏈離子對雙親分子 Langmuir 單分子層行為的影響. 成功大學化學工程學系學位論文, 1-112.
陳振豪. (2016). 不對稱碳鏈對離子對雙親分子雙層膜結構性質之影響以及環糊精/聚胺酸雙親分子凝膠化機制之探討.
黃柏淞. (2020). 由帶正電陰陽離子液胞與玻尿酸製備之複合物的物理性質和包覆行為. 成功大學化學工程學系學位論文, 1-151.
廖怡芬. (2006). 長碳鏈醇類添加劑對帶電陰陽離子液胞物理穩定性的影響. 成功大學化學工程學系學位論文, 1-106.
謝佑翎. (2017). 乙醇與膽固醇對 DPPC 脂質體雙層膜特性之影響. 成功大學化學工程學系學位論文, 1-101.
校內:2026-08-26公開