簡易檢索 / 詳目顯示

研究生: 劉穎奇
Liu, Ying-Chi
論文名稱: 以逆算法配合實驗數據估算噴霧冷卻之熱傳特性
Application of the Inverse Scheme with Experimental Data to Estimate Heat Transfer Characteristics in Spray Cooling
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 表面熱通量表面溫度噴霧冷卻
外文關鍵詞: Spray cooling, Surface temperature, Surface heat flux
相關次數: 點閱:122下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文由加壓工質液體經噴嘴產生單佈性噴霧噴於高溫平板上,探討噴霧液滴對高溫平板之冷卻行為,並估算暫態噴霧冷卻之熱傳特性。本文乃以混合逆算法(Hybrid inverse scheme)與有限差分法(Finite difference method)的數值方法,並配合最小平方法(Least-squares scheme)和溫度量測值來估算噴霧冷卻熱表面之表面溫度(Surface temperature)及表面熱通量(Surface heat flux)。首先藉實例之實驗數據,預測一維熱傳問題之表面熱通量。結果顯示本文之表面熱通量預測值符合實例之物理模型。本文進一步用自行架設之實驗平台,改變韋伯數(Weber number),預估噴霧冷卻之熱傳特性。本文之實驗與相關文獻相比較,結果發現本文之試件表面熱傳量隨噴霧流量增加而增大,然而薄膜沸騰(Film boiling)現象不明顯。

    The present study proposed a hybrid inverse scheme involving finite difference method in conjunction with least-squares scheme and the experimental temperature data inside the test material to predict the variation of the surface temperature and surface heat flux during spray cooling on a hot surface. Comparisons of surface heat flux between the present estimates and previous estimated results were made. In order to investigate the effect of liquid sprays on surface heat flux, an experimental study was conducted in the present study. The results showed that the increase in the critical heat flux (CHF) was observed by increasing volumetric spray flux. However, the effects of film boiling heat transfer were not obvious under the experimental conditions in this study.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 XI 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究目的 4 1-4 研究架構 4 第二章 理論分析與數值分析 6 2-1 簡介 6 2-2 理論分析 6 2-2-1 物理模式 6 2-2-2 數學模式 7 2-3 數值分析 9 2-3-1 逆向熱傳導問題 9 2-3-2 直接熱傳導問題 13 第三章 實例研究 18 3-1 簡介 18 3-2 實例比較 18 第四章 噴霧冷卻實驗操作與結果 42 4-1 簡介 42 4-2 實驗設備 42 4-3 實驗步驟 45 4-4 實驗參數 46 4-5 實驗結果與數值分析 46 第五章 綜合結論與未來展望 67 5-1 綜合結論 67 5-2 未來發展方向與建議 68 參考文獻 69

    [1] S. C. Yao and K. J. Choit, “Heat transfer experiments of mono- dispersed vertically impacting sprays,” Int. J. Multiphase Flow, vol. 13, pp. 639-648, 1987.

    [2] I. Mudawar and W. S. Valentine, “Determination of the local quench curve for spray-cooled metallic surfaces,” J. Heat Treating, vol. 7, pp. 107-121, 1989.

    [3] D. E. Tilton, M. R. Pais and L. C. Chow, “High power density spray cooling,” WRDC-TR-89-2082, Wright Laboratory, OH, 1989.

    [4] M. S. Sehmbey, M. R. Pais and L. C. Chow, “Effect of surface material properties and surface characteristics in evaporative spray cooling,” J. Thermophys. Heat Transfer, vol. 6, pp. 505-512, 1992.

    [5] K. A. Estes and I. Mudawar, “Correlation of Sauter mean diameter and critical heat flux for spray cooling of small surfaces,” Int. J. Heat Mass Transfer, vol. 38, pp. 2985-2996, 1995.

    [6] J. Yang, L. C. Chow and M. R. Pais, “Nucleate boiling heat transfer in spray cooling,” ASME J. Heat Transfer, vol. 118, pp. 668-671, 1996.

    [7] J. E. Gonzalez and W. Z. Black, “Study of droplet sprays prior to impact on a heated horizontal surface,” ASME J. Heat Transfer, vol. 119, pp. 279-281, 1997.

    [8] J. D. Bernardin, C. J. Stebbins and I. Mudawar, “Mapping of impact and heat transfer regimes of water drops impinging on a polished surface,” Int. J. Heat Mass Transfer, vol. 40, pp. 247-267,1997.

    [9] K. Oliphant, B. W. Webb and M. Q. McQuay, “An experimental comparison of liquid jet array and spray impingment cooling in the non-boiling regime,” Exper. Thermal Fluid Sci., vol. 18, pp. 1-10, 1998.

    [10] Y. M. Qiao and S. Chandra, “Spray cooling enhancement by addition of a surfactant,” ASME J. Heat Transfer, vol. 120, pp. 92-98, 1998.

    [11] H. Chaves, A. M. Kubitzek and F. Obermeier, “Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls,” Int. J. Heat Fluid Flow, vol. 20, pp. 470-476, 1999.

    [12] J. J. Huddle, L. C. Chow, S. Lei, A. Marcos, D. P. Rini, S. J. Lindauer, M. Bass and P. J. Delfyett, “Thermal Management of diode laser arrays,” Sixteenth IEEE Semi-Therm. Symposium, pp. 154-160, 2000.

    [13] K. I. Yoshida, Y. Abe, T. Oka, Y. H. Mori and A. Nagashima, “Spray cooling under reduced gravity condition,” ASME J. Heat Transfer, vol. 123, pp. 309-318, 2001.

    [14] R. H. Chen, L. C. Chow, J. E. Navedo, “Effects of spray characteristics on critical heat flux in subcooled water spray cooling,” Int. J. Heat Mass Transfer, vol. 45, pp. 4033-4043, 2002.

    [15] Q. Cui, S. Chandra and S. McCahan, “The effect of dissolving salts in water sprays used for quenching a hot surface:Part 2-spray cooling,” ASME J. Heat Transfer, vol. 125, pp. 333-338, 2003.

    [16] W. Jia and H. H. Qiu, “Experimental investigation of droplet dynamics and heat transfer in spray cooling,” Exper. Thermal Fluid Sci., vol. 27, pp. 829-838, 2003.

    [17] S. S. Hsieh, T. C. Fan and H. H. Tsai, “Spray cooling characteristics of water and R-134a. Part II: transient cooling,” Int. J. Heat Mass Transfer, vol. 47, pp. 5713-5724, 2004.

    [18] B. Horacek, K. T. Kiger and J. Kim, “Single nozzle spray cooling heat transfer mechanisms,” Int. J Heat Mass Transfer, vol. 48, pp. 1425-1438, 2004.

    [19] S. Lee, J. Park, P. Lee and M. Kim, “Heat transfer characteristics during mist cooling on a heated cylinder,” Heat Transfer Eng., vol. 26, no.8, pp. 24-31, 2005.

    [20] S. Freund, A. G. Pautsch, T. A. Shedd and S. Kabelac, “Local heat transfer coefficients in spray cooling systems measured with temperature oscillation IR thermography,” Int. J. Heat Mass Transfer, vol. 50, pp. 1953-1962, 2007.

    [21] C. Sodtke and P. Stephan, “Spray cooling on micro structured surfaces,” Int. J. Heat Mass Transfer, vol. 50, pp. 4089-4097, 2007.

    [22] H. T. Chen and H. C. Lee, “Estimation of spray cooling characteristics on a hot surface using the hybrid inverse scheme,” Int. J. Heat Mass Transfer, vol. 50, pp. 2503-2513, 2007.

    [23] M. Visaria and I. Mudawar, “Theoretical and experimental study of the effects of spray inclination on two-phase spray cooling and critical heat flux,” Int. J. Heat Mass Transfer, vol. 51, pp. 2398-2410, 2008.

    [24] H. T. Chen and S. M. Chang, “Application of the hybrid method to inverse heat conduction problems,” Int. J. Heat Mass Transfer, vol. 33, pp. 621-628, 1990.

    [25] H. T. Chen and J. Y. Lin, “Hybrid Laplace transform technique for non-linear transient thermal problems,” Int. J. Heat Mass Transfer, vol. 34, pp. 1301-1308, 1991.

    [26] H. T. Chen and J. Y. Lin, “Analysis of two-dimensional hyperbolic heat conduction problems,” Int. J. Heat Mass Transfer, vol. 37, pp. 153-164, 1994.

    [27] H. T. Chen, J. P. Song, and Y. T. Wang, “Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers,” Int. J. Heat Mass Transfer, vol. 48, pp. 2697-2707, 2005.

    [28] H. T. Chen and J. C. Chou, “Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers,” Int. J. Heat Mass Transfer, vol. 49, pp. 3034-3044, 2006.

    [29] H. T. Chen and X. Y. Wu, “Estimation of heat transfer coefficient in two-dimensional inverse heat conduction problems,” Numer. Heat Transfer B, vol. 50, pp. 375-394, 2006.

    [30] H. T. Chen and J. C. Chou, “Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings,” Int. J. Heat Mass Transfer, vol. 50, pp. 45-47, 2007.

    [31] H. T. Chen and W. L. Hsu, “Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings,” Int. J. Heat Mass Transfer, vol. 50, pp. 1750-1761, 2007.

    [32] H. T. Chen and X. Y. Wu, “Estimation of surface conditions for nonlinear inverse heat conduction problems using the hybrid inverse scheme,” Numer. Heat Transfer B, vol. 51, pp. 159-178, 2007.

    [33] H. T. Chen and X. Y. Wu, “Investigation of heat-transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme,” Int. J. Numer. Meth. Eng., vol. 73, pp. 107-122, 2008.

    [34] H. T. Chen and H. C. Wang, “Estimation of heat-transfer characteristics on a fin under wet conditions,” Int. J. Heat Mass Transfer, vol. 51, pp. 2123-2138, 2008.

    [35] 方崇成, “噴霧冷卻現象之研究”, 國立中山大學機械與機電工程學系, 碩士論文, 2003.

    [36] 李宏誌, “噴霧冷卻之表面熱行為的研究”, 國立成功大學機械工程學系, 碩士論文, 2005.

    [37] F. P. Incropera and D. P. DeWitt, “Introduction to Heat Transfer,” 4th ed., John Wiley and Sons Inc., New York, 2002.

    [38] R. E. Sonntag, C. Borgnakke and G. J. Van Wylen, “Fundamentals of Thermodynamics,” 6th ed., John Wiley and Sons Inc., New York, 2003.

    [39] V. S. Arpaci, S. H. Kao, A. Selamet, “Introduction to Heat Transfer,” Prentice Hall Inc., New Jersey, 1999.

    下載圖示 校內:2010-08-13公開
    校外:2011-08-13公開
    QR CODE