| 研究生: |
呂毓笙 Lu, Yu-Sheng |
|---|---|
| 論文名稱: |
加速度回授於撓性結構之振動控制 Vibration Control of Compliant Structure Using Acceleration Feedback |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 微機電加速規 、加速度回授控制 、精密定位平台 、H∞控制器 |
| 外文關鍵詞: | MEMS Accelerometer, Acceleration Feedback Control, Precision Positioning Stages, H∞ Control |
| 相關次數: | 點閱:181 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技發展,在製程與檢測方面應用的精密程度越來越高,如自動化光學檢測系統(AOI)。在自動化光學檢測系統的運作中,由於面板檢測器台上的顯微鏡組需要大量移動,且又是架設在高速移動的大型龍門上,在龍門停止時,機台晃動的時間需要盡可能縮短,否則會造成顯微鏡組與待檢測面板間的相對運動而影響到對位時的偏差量以及影像模糊等問題。本實驗室學長提出採用微米級精密定位平台透過主動式振動控制來抑制顯微鏡組所產生的晃動情形,但是在感測器與大型龍門機台間也會有相對運動情形的產生,故不能完全克服顯微鏡組的晃動情形。本文建立使用微機電加速規當作感測器,結合防漂移積分器與加速度回授控制的研究概念,來控制此微米級精密定位平台抑制顯微鏡組之晃動情形。但是目前為止,現有的微機電加速規的精度無法在微米級精密定位平台量測到有效的加速度訊號,故本文利用一振動量較大的雙鉗樑系統當作此研究概念的主要振動來源。而在加速度的積分過程中,常會有訊號漂移的現象產生,本文透過對硬體積分器建立等效模型以及結合高通濾波器等效模型的想法構成一防漂移積分器,並經實驗證明可有效抑制加速度積分成位移時的訊號漂移現象。在振動控制方面,我們透過加速度回授的方式設計了PI+V.F.控制器、PID控制器以及H∞控制器,透過步階響應、弦波路徑追蹤以及量測雜訊之強健性實驗,與位移回授的PID控制器與H∞控制器比較其性能。我們發現在暫態性能中,直接位移回授的控制器優於加速度回授的控制器,且H∞控制器優於PID控制器;在弦波路徑追蹤中,H∞控制器的等效頻寬優於PID控制器;強健性實驗方面,加速度回授的控制器較位移回授的控制器能抑制其雜訊量測對系統所造成的影響。本文對於應用加速規與加速度回授控制的研究已有初步的成果,希望未來能將此成果實際應用於微米級精密定位平台,甚至於AOI檢測機台上。
Automatic optical inspection (AOI) systems adapted on a movable gantry have been widely used in modern large area inspection tasks. The performance of motion control directly affects the accuracy and perhaps the yield of the entire process. To maximize process yield, the gantry should maneuver as fast as possible in order to maximize the throughput. However, this action will generate significant motion-induced vibration that excites the flexible modes of the systems, which may increase the settling time and reduce the inspection efficiency. As a result, a trade-off exists between the speed of movement and the achieved settling time. An alternative approach is to mount AOIs on a controllable stage and to eliminate the relative vibration between the AOI and the corresponding object to be inspected. By this approach, the effective bandwidth can be improved. However, to realize this concept, conventional position sensors cannot be used due to lacks of an absolute reference. An alternative solution is to use accelerometer for providing relative displacement by integrating the measurable accelerations. This solution brings potentially two problems: first, the possible drifting of low frequency signals and second, a re-design of feedback control scheme.
By experiments, we successfully develop the anti-drift integrator, which combines two second-order Sallen-Keys high-pass filters and original model of hardware integrator for enhancing the drifting rejection. Otherwise, three controllers of acceleration feedback was designed to enhance the vibration of double clam beam test platform, Nevertheless, through detail step and sinusoidal tests simulation and experimental correlations and interactions, these three controllers have been successfully implemented.In the study, we have realized the integration of acceleration feedback controller and the model of anti-drift integrator for suppressing low frequency drifting by combining of the models of the hardware integrator and two Sallen-Key high-pass filters.. Second, by both simulation and experimental investigation, the acceleration feedback controllers have gotten less effect than the displacement feedback controllers.
Although this study was motivated by the needs of AOI vibration control, it is not limited in this application only. The methodology proposed can be used in other applications related to precision positioning control using inertial sensor, such as active vibration control in precision semiconductor processing equipment.
[1] http://tw.775588.net/bc/index1.php
[2] 井澤實編著、杜光宗編譯, 精密定位技術及其設計技術, 建宏出版社, 2~7、26~33、217~329 頁, 中華民國八十五年七月初版.
[3] 李哲維, 堆疊式壓電雙軸精密定位平台之設計、分析與控制, 國立成功大學機械系碩士論文, 2012.
[4] TFT-LCD Chip on Glass
http://robotics.csie.ncku.edu.tw/Students/PhD/93/Nat/ChipOnGlass.htm
[5] T. H. Cheng, and I. K. Oh, “Vibration Suppression of Flexible Beam Using Electromagnetic Shunt Damper,” IEEE Transactions on Magnetics, vol. 45, pp. 2758-2761, June 2009.
[6] 中華民國鋼結構協會
http://www.tiscnet.org.tw/index.php
[7] 陳韋如, 有限元素分析於撓性長距離移動系統之輸入修正設計與應用, 國立成功大學機械系碩士論文, 2011.
[8] 王維志, 具放大機構之單軸壓電驅動撓性精密定位平台之分析、設計、控制, 國立成功大學機械工程學系碩士論文, 2010.
[9] 麥迪技術
http://www.marktec-technology.com/Product/lda
[10] http://140.134.32.129/edu/eleme/premea/lesson10-2-0.htm
[11] H. H. S. Liu , Grantham K. H. Pang, “Accelerometer for Mobile Robot Positioning,” IEEE Transactions On Industry Applications, vol. 37, no. 3, May/June 2001.
[12] J. Gao, P. Webb, N. Gindy, “Research on an inertial positioning system for a parallel kinematic machine,” Mechatronics 15 (2005) 1–22, 26 July 2004.
[13] 趙銘靖, 應用PID控制於單軸撓性壓電定位平台之振動控制研究, 南台科技大學機械工程學系碩士論文, 2011.
[14] 郭豪翔, 結合撓性結構與音圈馬達之振動獵能與控制研究, 國立成功大學機械工程學系碩士論文,2013
[15] H. P. Gavin, Rodrigo Morales, and Kathryn Reilly, “Drift-free integrators,” Review of Scientific Instruments, volume 69,number 5,May 1998.
[16] 林韋澄, 慣性導航之訊號飄移抑制方法設計與實驗分析, 國立成功大學機械系碩士論文, 2009.
[17] 李宏仁, 微米級定位平台振動主動控制之研究, 南台科技大學奈米科技研究所碩士論文, 2008.
[18] J.D. Han, Y.C. Wang, D. L. Tan and W.L. Xu, “Acceleration Feedback Control for Direct-Drive Motor System,” IEEE International Conference on Intelligent Robots and Systems, 2000.
[19] P. B. Schmidt, Robert D. Lorenz, “Design Pricciples and Implementation of Acceleration Feedback to Improve Performance of dc Drives,” IEEE Transctions On Industry Applications, vol. 28, no. 3, May/June, 1992.
[20] Z. Xiaoyao, Z. Zhiyong, F. Dapeng, “Improved Angular Velocity Estimation Using MEMS Sensors with Applications in Miniature Inertially Stabilized Platforms,” Chinese Journal of Aeronautics 24 (2011), pp.648-656, July 2011.
[21] J. C. Shen, W. Y. Jywe, H. K. Chiang, and Y. L. Shu, “Precision tracking control of a piezoelectric-acuated system,” in Proceedings of the 15th Mediterranean Conference on Control & Automation, pp. 1-6, 2007.
[22] J. Domingo, “Nonlinear control system based on fuzzy logic technique applied to drive piezoactuators for microrobotic applications,” IEEE International Conference on Emerging Technologies and Factory Automation, Vol.1, pp.559-563, 1999.
[23] K. S. Chen, “A Spring-Dominated Regime Design of a High Load Capacity,Electromagnetically Driven X-T-θ Stage,” The Department of Mechanical Engineering of Massachusetts Institude of Technology, May 1995.
[24] 張瀠文, 加速規定位系統研製, 國立成功大學工程科學系碩士論文, 2012.
[25] 王炫文, 高性能加速規之研製與無刷伺服系統之速度估測與干擾補償, 國立雲林科技大學機械工程系碩士論文, 2007.
[26] Z. F. Syed , P. Aggarwal , C. Goodall , X. Niu, and N. El-Sheimy, "A new multi-position calibration method for MEMS inertial navigation systems," Measurement Science and Technology, 2007.
[27] X.Niu, "Micromachined attitude measurement unit with application in satellite TV atnenna stabilization," in Department of Precision Instruments and Machinery. vol. PhD Dissertation: Tsinghua, 2002.
[28] D.H. Titterton and J. L. Weston, Strapdown inertial navigation technology: IET, 1997.
[29] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration: John-Wiley & Sons, 2001.
[30] S. Sukkarieh, E. M. Nebot, and H. F. Durrant-Whyte, "A high integrity IMU/GPS navigation loop for autonomous land vehicle applications," Robotics and Automation, IEEE Transactions on, vol. 15, pp. 572-578, 1999.
[31] R. Toledo-Moreo, M. A. Zamora-Izquierdo, B. Ubeda-Miarro, and A. F. Gomez-Skarmeta, "High-Integrity IMM-EKF-Based Road Vehicle Navigation With Low-Cost GPS/SBAS/INS," Intelligent Transportation Systems, IEEE Transactions on, vol. 8, pp. 491-511, 2007.
[32] Z. Syed, X. Niu, C. Goodall, and N. El-Sheimy, "Optimal Signal Sampling Configuration for MEMS INS/GPS Navigation," in Vehicular Technology Conference, 2006. VTC-2006 Fall. 2006 IEEE 64th, 2006, pp. 1-5.
[33] S. Yun, E. R. Bachmann, R. B. McGhee, R. H. Whalen, R. L. Roberts, R. G. Knapp, A. J. Healey, and M. J. Zyda, "Testing and evaluation of an integrated GPS/INS system for small AUV navigation," Oceanic Engineering, IEEE Journal of, vol. 24, pp. 396-404, 1999.
[34] W. Abdel-Hamid, A. Noureldin, and N. El-Sheimy, "Adaptive Fuzzy Prediction of Low-Cost Inertial-Based Positioning Errors," Fuzzy Systems, IEEE Transactions on, vol. 15, pp. 519-529, 2007.
[35] S. K. Hong, "Compensation of nonlinear thermal bias drift of Resonant Rate Sensor using fuzzy logic," Sensors and Actuators A: Physical, vol. 78, pp. 143-148, 1999.
[36] S. Jinxue, H. Zhen, Y. Li, T. Yuxin, and Z. Yan, "Adaptive fuzzy fault-tolerant voting mechanism based on EKF," in Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on, 2008, pp. 740-744.
[37] J. Z. Sasiadek, Q. Wang, and M. B. Zeremba, "Fuzzy adaptive Kalman filtering for INS/GPS data fusion," in Intelligent Control, 2000. Proceedings of the 2000 IEEE International Symposium on, 2000, pp. 181-186.
[38] J. Xun Sheng, W. Shourong, X. Yishen, S. Qin, and X. Dunzhu, "Application of the Digital Signal Procession in the MEMS Gyroscope De-drift," in Nano/Micro Engineered and Molecular Systems, 2006. NEMS '06. 1st IEEE International Conference on, 2006, pp. 218-221.
[39] 馮爵敏, 慣性元件訊號修正方法暨補償演算於抑制誤差之系統設計分析及研究, 國立成功大學機械工程系碩士論文, 2008.
[40] http://jpkc.nwpu.edu.cn/jp2009/04/oldsite/wlkc2/dd03/3-3.htm
[41] G. C. Marano, S. Sgobba, R. Greco and M. Mezzina, “Robust optimum design of tuned mass dampers devices in random vibrations mitigation,” Joumal of Souned and Vibration, vol. 313, pp. 472-492, 2008.
[42] Y. Sung, W. Singhose, “Robustness analysis of input shaping commands for two-mode flexible systems,” IET Control Theory and Applications, pp.722-730, 2008.
[43] 張碩,詹森, 自動控制系統, 鼎茂圖書, 台北, 2013.
[44] George Zames, “Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses,” IEEE Trans. Automatic Control, vol. 26, pp. 301–320, 1981.
[45] J.C. Doyle, K. Glover, P.P. Khar Gonekar and B.A. Francis, “State-Space Solutions to Standard H2 and H∞ Control Problems,” IEEE Trans. Automatic Control, vol. 34, pp. 831-847, 1989.
[46] 超級電容應用http://en.wikipedia.org/wiki/Electric_double-layer_capacitor
[47] T. L. Hsian, Y. Y. Sun, M. C. Tsai, “Speed Controller Design Using Singular H Control,” Industrial Automation and Control:Emerging Technologies, Taipei, pp. 632-636, 1995.
[48] 林韋志, 具有H∞強健性之模糊模式追蹤控制, 中原大學碩士論文, 2001.
[49] 郭建賢, 立式主動磁浮軸承系統之強健控制與分析, 國立成功大學碩士論文, 2005.
[50] 呂育儒, 倒單擺系統模型之建立與控制, 國立台灣大學碩士論文, 2007.
[51] P. C. Chen and M. C. Shih, “Robust Control of a Novel Active Pneumatic Vibration Isolator through Floor Vibration Observer,” Journal of Vibration and Control, vol. 17, pp. 1325-1336, August 2011.
[52] J. Lian and J. Zhao, “Robust H-infinity integral sliding mode control for a class of uncertain switched nonlinear systems,” Journal of Control Theory and Applications, vol 8, pp. 521-526, 2010.
[53] 紹英哲, 適應性振動吸收器之設計與分析, 國立雲林科技大學碩士論文, 2006.
[54] Q. Xu and Y. Li, “Global sliding mode-based tracking control of a piezo-driven XY micropositioning stage with unmodeled hysteresis,” in Intelligent Robots and Systems on IEEE/RSJ International Conference, St. Louis, USA, pp. 755-760, October 11-15, 2009.
[55] 陳秉昌, 低速高精度液壓系統伺服位置控制之研究, 國立成功大學機械系所博士班論文, 2003.
[56] K. Zhou and J. C. Doyle, Essentials of Robust Control, Prentice Hall,1997.
[57] W.C. Wang, J.W. Lee, K.S. Chen and Y.H. Liu, “Design and vibration control of a notch-based compliant stage for display panel inspection applications,” Journal of Sound and Vibration, vol 333, pp. 2701-2708, 2014
[58] 楊憲東, 精密機械控制原理與模擬, 全華圖書, 1998.
[59] 曾仲熙, 控制器設計與模擬範例, 東華書局, 2011.