簡易檢索 / 詳目顯示

研究生: 黃志雄
Huang, Jhih-Syong
論文名稱: 嶄新的外差式干涉術於光學旋光性與圓二色性之量測
A Novel Heterodyne Interferometry in Optical Rotatory Dispersion and Circular Dichroism Detections
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 61
中文關鍵詞: 外差式干涉術對掌性物質
外文關鍵詞: heterodyne interferometry, chiral
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的在於開發一套以外差式干涉術(heterodyne interferometry)為基礎之量測系統,輔以自行推導的計算公式來同步量測一對掌性(chiral)物質之光學旋光性(optical rotatory dispersion,ORD) 與圓二色性(circular dichroism,CD)的橢圓率資訊。藉由以此外差式干涉架構中所得的兩通道訊號間的相位差(phase difference)與振幅的比值,來同時求得出我們所要的ORD與CD資訊,也因如此,雷射相位與光強的穩定與否對所求的資訊解析度就顯得非常重要。
    相位穩定問題部分,由於量測架構以兩通道訊號間的相位差為計算基準,因此,雷射本身的相位穩定較不是問題,而周邊環境因素為主要關鍵。本論文除了於對雷射經過的區域做隔離控制外,也對樣本做溫度控制,將所有熱源包含雷射造成的部分與量測系統隔絕,來加以改善其訊號穩定度。實驗中發現其相位穩定度由0.47 rad改善至0.01 rad,經計算所得到的光學旋轉角解析度約為8.3×10^-5 度,其對應的葡萄糖濃度解析能力可達到1.8×10^-5(g/ml) 。至於雷射光強的部分,實驗中在雷射出射處直接引出一道作為正規化作用,來提高雷射光強訊號的量測穩定度,用以提升其振幅訊號的訊噪比(signal-to-noise ratio,SNR),可得之CD橢圓率解析度約為2.4×10^-4 rad。

    The main purpose of this thesis is to develop a heterodyne interferometry-based detection system with in-lab developed algorithm to measure the optical rotatory dispersion (ORD) and the circular dichroism (CD) of the ellipticity information of chiral materials simultaneously. According to the phase difference and the magnitude ratio between the two channel signals of the heterodyne interferometry detection system, the ORD and CD can be obtained, respectively. Hence, the stabilities of the phase and intensity of the light source will affect the detection resolution.
    Regarding the phase stability issue, the measurement framework based on the phase difference of the two-channel signals will eliminate the laser’s phase instability; hence, the measurement environment will dominate the stability of the phase measurement. To resolve the problem, the temperature of the sample is controlled and the heating sources are isolated from the detection system. The experimental results demonstrate that the phase stability is improved from 0.47 rad down to 0.01 rad in root mean square error. The corresponding detection resolution at the rotation angle of glucose solution is about 8.3×10^-5 rad and the corresponding concentration is 1.8×10^-5 (g/ml) . About the intensity stability, the measurement intensity signal is normalized with a reference beam signal to achieve the intensity signal stability better than 1 %, so the signal-to-noise ratio (SNR) of the amplitude ratio measurement is improved. Currently, the detection resolution of the CD ellipticity is about 2.4×10^-4 rad.

    摘要……………………………………………………Ⅰ Abstract…………………………………………………Ⅱ 誌謝……………………………………………………Ⅲ 目錄……………………………………………………Ⅳ 圖目錄…………………………………………………Ⅵ 表目錄…………………………………………………Ⅸ 第一章 序論 ……………………………………………1 1-1前言……..…………………………………………1 1-2文獻回顧………………………………………………………1 1-3研究動機與方法………………………………………………3 1-4論文架構………………………………………………………4 第二章 對掌性物質的光學旋光性與圓二色性 ……………………6 2-1對掌性物質……………………………………………………6 2-2 光學對旋光現象之解釋 ………………………………8 2-3 光學對圓二色性之解釋 ………………………………12 第三章 建構以外差式干涉術為基礎的量測系統 …………………17 3-1 外差干涉術基本原理 ………………………………………17 3-1-1 外差式光源 …………………………………………18 3-1-2 外差式干涉術於干涉儀之基本原理[7,18,26]………………20 3-1-3 電光調變器原理與應用[27,28]……………………………22 3-2 光學架構理論推導[7]…………………………………………26 3-3 訊號之擷取與調變 ………………………………………33 第四章 光學旋轉角與圓二色性之量測分析………………………37 4-1 量測訊號校正分析 …………………………………………37 4-1-1訊號飄移 ……………………………………………38 4-1-2 訊號解析度…………………………………………40 4-2 系統誤差……………………………………………………42 4-3只具光學旋轉角樣本之實驗結果……………………………50 4-4 模擬分析同時具光學旋轉角與圓二色性現象樣本之結果...52 第五章 結論與未來展望…………………………………………56 參考文獻…………………………………………………………58

    [1] J. C. Suits, “Magneto-optical rotation and ellipticity measurements with a spinning analyzer,” Rev. Sci. Instrum. 42, 19-22 (1971).
    [2] M. P. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Opt. Lett. 9, 319-321 (1984).
    [3] W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating,” Appl. Opt. 9, 649-652 (1970).
    [4] T. Suzuki and R. Hioki, “Translation of light frequency by a moving grating,” J. Opt. Soc. Am. 57, 1551 (1967).
    [5] L. Velluz, M. Legrand, and M. Grosjean, Optical Circular Dichroism, Academic (1965).
    [6] K. Iizuka ed., Elements of Photonics: Free Space and Special Media, Vo1 I., John Wiley (2002).
    [7] J. Y. Lin, K. H. Chen, and D. C. Su “Improved method for measuring small optical rotation angle of chiral medium,” Opt. Commun. 238, 113-118 (2004).
    [8] J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long known effect,” J. Opt. Sci. Am. 59, 950-954 (1969).
    [9] C. Chou, Y. C. Huang, C. M. Feng, and M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356-359 (1997).
    [10] 林正祥,光電訊號處理系統於生醫檢測之開發與應用,國立中央大學機械工程研究所,九十四學年碩士論文。
    [11] C. Chou, H. M. Tsai, K. Y. Liao, L. D. Chou, and P. H. Huang, “Optical activity measurement by use of a balanced detector optical heterodyne interferometer,” Appl. Opt. 16, 3733-3793 (2006).
    [12] S. M. Kelly, T. J. Jess, and N. C. Price “How to study proteins by circular dichroism,” Biochimical et Biophysical Acta 1751, 119-139 (2005).
    [13] W. Brown and T. Poon, Introduction to Organic Chemistry, John Wiley & Sons (2005).
    [14] 葉秀林,立體化學,五南圖書 (2002)。
    [15] Model J-810 Spectropolarimeter, User’s Manual, Jasco.
    [16] E. J. Gillham, “A high-precision photoelectric polarimeter,” J. sci. Ins. 34, 435-439(1957).
    [17] K. Nakanishi, N. Berova, and R. W. woody, Circular Dichroism Principles and Applications, VCH (1994).
    [18] P. Hariharan, Basic of Interferometry, Academic Press (1992).
    [19] C. Chou, J. C. Shyu, Y. C. Huang, and C. K. Yuan, “Common-path optical heterodyne profilometer: a configuration,” Opt. Sci. Am. 19, 4137-4142 (1998).
    [20] 李朱育、林坤億、盧洛霈,“波長調製外差散班干涉儀”,國科會產學合作成果專刊 28, 138-145 (2008).
    [21] S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry base on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761-767 (1969).
    [22] M. G. Gazalet, M. Raveg, F. Haine, C. Bruneel, and E. Bridoux, “Acousto-optic low frequency shifter,” Appl. Opt., 33, 1293-1298 (1994).
    [23] H. Takasaki, N. Umeda, and M. Tsukiji, “Stabilized transvere Zeeman laser as a new light soure for optical measurement,” Appl. Opt. 19, 435-441 (1980).
    [24] T. Mitusi and K. Sakurai, “Precise measurement of the refractive index and optical rotator power of a suspension by a delayed optical heterodyne technique,” Appl. Opt. 35, 2253-2258 (1996).
    [25] K.W. Hlpps and G.A. Crosby, “Application of the photoelastic modulator to polarization spectroscopy,” Am. Phys. Chem. 5, 554-562(1979).
    [26] J. F. Lin, “Glucose concentration measurement using an electro-optically modulated circular polariscope,” J. Modern Opt. 8, 992-999(2009).
    [27] A. Yariv and P. Yeh, Optical Wave in Crystals, John Wiley & Sons (1984).
    [28] B. H. Billings, “The electro-optic effect in uniaxial crystal of the type . I. Theoretical,” J. Opt. Sci. Am. 39, 127-133 (1949).
    [29] Model SR830 Lock-in Amplifier, User’s Manual, Stanford Research System.
    [30] Model 4002 Electro-Optic Phase Modulators, User’s Guide, New Focus.
    [31] R. C. Weast ed., CRC Handbook of Chemistry and Physics, CRC (1981).
    [32] C. M. Wu and R. D. Deslattes, “Analytical modeling of the periodic nonlinearity in heterodyne interferometry,” Appl. Opt. 37, 6696-6700 (1998).
    [33] W. Hou and G. Wilkening, “Investigation and compensation of the nonlinearity of heterodyne interferometers,” Prec. Eng. 14, 91-98 (1992).
    [34] Optics and Optical Instruments Catalog, Edmund (2009).
    [35] M. Mori, T. Kondo, K. Toki, and K. Yoshida, “Structure of anthocyanin from the blue petals of Phacelia campanularia and its blue flower color development,” Phytochemistry 67, 622-629(2006).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE