簡易檢索 / 詳目顯示

研究生: 林志明
Lin, Chih-Ming
論文名稱: 應用於Ku至Ka頻段之寬頻、微小化雙平衡混頻器與次諧波混頻器之研製
Broadband Miniaturized Doubly Balanced Mixers and Subharmonic Mixers for Ku- to Ka-band Applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 147
中文關鍵詞: 單晶微波積體電路砷化鎵互補金屬氧化物半導體混頻器次諧波混頻器諧波抑制功率分配器巴倫集總元件180°混成器
外文關鍵詞: Monolithic microwave/millimeter-wave integrated circuits (MMICs), GaAs, CMOS, Mixer, Subharmonic mixer, Harmonics suppression, Power divider, Balun, Lumped element, 180° hybrid
相關次數: 點閱:134下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於製程技術日新月異,使得微波及毫米波之單晶積體電路之高頻特性有顯著的提升,透過III-V化合物半導體製程所製作之主、被動元件,具有優異的電性,其中Schottky二極體相當適用於被動混頻器之設計,因此採用0.15-μm pHEMT製程技術來實現各式新穎被動混頻器。此外,在現今微波及毫米波領域裡,單一晶片系統 (SOC) 整合天線、射頻區塊與基頻區塊的類比、數位電路已蔚為風潮,其中矽製程技術具有極佳的積體整合度,然而受限於主動元件之低崩潰電壓,導致矽製程不利於高功率放大器之製作,因此目前主流依舊採用單一封裝系統 (SIP) 為主,本論文中以提升積體整合度為目標,使用0.18-μm CMOS製程設計微小化之新式被動混頻器有其研究價值。另一方面,印刷電路板 (PCB) 技術已廣泛的使用在收發系統的整合,且成本相對低廉,基於此,新式射頻被動電路的設計能提供一較佳的選擇於各式射頻電路與系統之應用。
    在Ku、K與Ka頻帶混頻器之設計上,本論文致力於寬頻與微小化之研發標的,提出新穎的設計概念針對操作頻寬、中頻頻寬、埠際隔離度、簡化佈局與被動電路微小化進行改良。在雙平衡星型混頻器的設計上,本論文提出兩種改良架構,藉此簡化電路架構進而縮小晶片面積,相較於傳統的設計,中頻端的精簡佈局可提升中頻頻寬至15 GHz以上,在雙平衡環型混頻器的研發上,為求電路佈局的簡潔,提出一新穎的設計概念,將原本高頻段的射頻巴倫電路改由C頻段的微小化中頻巴倫代替,而本振埠與射頻埠分別為新式180°混成器之差埠與和埠,其中本振訊號會以0°與180°輸入至環型二極體,在升頻操作時,射頻端可將輸出的訊號同相取出,如此將不需要額外的訊號輸出電路,並可獲得30GHz的操作頻寬與20dB以上的埠際隔離度。本論文亦提出一新穎的環型混頻器架構,將射頻螺旋巴倫的接地端改由一低通濾波器取代,對射頻訊號提供一接地功能,對中頻訊號提供一傳輸路徑,因此中頻訊號將可順利取出,且大幅減小電路之面積,同時亦具有良好的埠際隔離度。
    隨著操作頻率的提升,高Q值之被動元件不易獲得,導致高功率輸出與低相位雜訊之壓控振盪器設計難度增加,此時次諧波混頻器提供一個極佳解決方案,傳統的次諧波混頻器由於電路架構上使用λLO/4的開路與短路微帶線,不利寬頻操作,本論文使用一TFMS為基礎的兩級Wilkinson功率結合器達成晶片縮小化的目的,並且可獲得10-40GHz的超寬頻特性。四次諧波混頻器僅使用四分之一的本振頻率即可達成混頻效果,基於此優點,本論文採用一集總式雙工濾波器,將這射頻與本振訊號結合輸入至並聯反接二極體對,如此一來不僅提高RF/LO隔離度,且可有效的拓展操作頻寬,並達成微小化的目的。經由新架構的研發,本論文所設計的混頻器業已達成寬頻操作、埠技隔離度之提升、中頻頻寬之擴展與晶片微小化之要求。
    最後,本論文運用電磁能隙架構 (EBG) 的慢波效應以及低通特性來設計一小型化可抑制n次諧波的功率分波器,由實作的成果得知EBG的應用可減少30%的四分之波長微帶線長度,另外EBG亦可改良DGS架構在接地面多一道製程的缺點,本論文亦使用EBG與指叉式電容來實現一微小化巴倫電路,平面式且小型化的設計有助於射頻電路的製作與整合,並降低其設計與製作時之難度。

    Due to the rapid advances of semiconductor technologies, the performance of monolithic microwave/millimeter-wave integrated circuits (MMICs) has been progressed significantly. The active and passive devices fabricated in III-V compound semiconductor technologies exhibit superior radio frequency (RF) characteristics. Particularly, the Schottky barrier diode is rather appropriate for the passive mixer designs. Thus a 0.15-μm pHEMT technology is used to realize various novel passive mixers. The current trend of microwave/millimeter-wave regime is towards system on chip (SOC). The SOC means that all the circuits, including RF front-end, analog, and digital circuits are integrated on the same chip. The silicon-based technologies have the highest level integration. Owing to the lower breakdown voltage of silicon-based devices, however, these technologies have poor output power capability to limit the development of the high power amplifier. Subsequently, the main trend still prefers system in package (SIP). In order to achieve high-level integration, it is very interesting in the investigation of miniature passive mixer by using a 0.18-μm CMOS technology. Moreover, the printed circuit broad (PCB) technologies are used extensively to integrate the transceiver systems, and further reduce cost. Based on these reasons, it is cost-effective if the novel passive circuits are fabricated in PCB technologies with a compact structure. These passive circuits can also be applied to various RF components and systems.
    In this dissertation, the design purpose of passive mixers will focus on the extension of operating bandwidth and circuit miniaturization for Ku-, K-, and Ka-band applications. We proposed several novel design concepts to improve operating bandwidth, IF bandwidth, port-to-port isolation, and compact layout. Based on the conventional doubly-balanced star mixer (star DBM), both novel configurations were utilized to simplify circuit structure and further reduce chip area. Consequently, the compact layout of IF extraction can be achieved to improve IF bandwidth up to 15 GHz. Additionally, based on the conventional ring DBM, a novel design concept is proposed to obtain the compact circuit layout. The RF balun used in the conventional ring DBM is instead of a C-band miniature IF balun. The LO signal and RF signal were excited into the difference port and sum port of a new 180° hybrid, respectively, Hence, the LO signal can be divided into two parts with equal amplitude and anti-phase, and then fed into ring quad diodes. Furthermore, the in-phase RF signal can be extracted from sum port of the 180° hybrid for up-converter mode without any additional extraction circuit. As the results, a 30 GHz operating bandwidth, and more than 20 dB port-to-port isolations can be attained. Another novel architecture of ring DBM also shows in this dissertation. The common ground of the RF spiral balun is replaced by a low-pass filter used to shorten RF signal and from an IF transmission path. This method is suitable to extract IF signal conveniently, reduce chip size more efficiently, and maintain superior port-to-port isolations as well.
    While the operating frequency increases, the Q-factor of passive elements will be degraded that is consequent on the degradation of output power and increase of phase noise of VCO. The subharmonic mixers (SHMs) provide an attractive choice to solve this problem. However, the conventional SHMs employ both λLO/4 open and short stubs to enhance isolations. Without doubt, the operating bandwidth is decreased distinctly. Accordingly, a two-stage Wilkinson power combiner using thin-film microstrip structure (TFMS) is utilized to design SHM and extend operating bandwidth ranging form 10 to 40 GHz. Furthermore, a quadruple SHM can be performed by a one- quarter of the LO frequency of a fundamental mixer. We propose a lumped frequency diplexer to combine high frequency RF and low frequency LO signals with superior LO-to-RF isolation. Moreover, the lumped structure is efficient to reduce chip size. Through the development of the novel architectures, the proposed mixers have accomplished broadband operation, superior port-to-port isolations, wider IF bandwidth, and chip miniaturization.
    Finally, based on the slow-wave effect and stop-band property of electromagnetic c bandgap (EBG), this dissertation presents a planar power divider with an effective technique for nth harmonics suppression. The proposed technique served by a microstrip EBG cell is used to suppress the nth harmonics and reduce the length of a quarter-wave line over 30% as compared to the conventional divider. In addition, a planar compact balun composed of an EBG cell and an interdigital capacitor is proposed. The planar and miniature design is beneficial to integrate RF circuits and degrade the practical difficulty.

    CONTENTS ABSTRACT (Chinese) …………………………………………………………… I ABSTRACT (English) …………………………………………………………… III ACKNOWLEDGMENTS …………………………………………………………… V CONTENTS ……………………………………………………………………… VII FIGURE CAPTIONS …………………………………………………………… XI TABLE CAPTIONS ……………………………………………………………… XV CHAPTER 1 Introduction 1.1 Development of MMIC technologies…………………………… 1 1.2 Wireless communication systems……………………………… 3 1.3 Motivation……………………………………………………… 6 1.4 Organization of the Dissertation………………………………… 8 1.5 References………………………………………………………… 11 CHAPTER 2 Doubly Balanced Monolithic Passive Mixers with Compact IF Extraction 2.1 Introduction …………………………………………………… 13 2.2 28-40 GHz Doubly Balanced Passive Mixer………………………… 15 2.2.1 Circuit Design of the Passive DBM………………………… 15 2.2.2 Circuit Implementation……………………………………… 22 2.2.3 Experimental Results………………………………………… 23 2.3 20-34 GHz Doubly Balanced CMOS Passive Mixer……………… 27 2.3.1 Circuit Design of the CMOS Passive DBM………………… 27 2.3.2 Circuit Implementation……………………………………… 30 2.3.3 Experimental Results………………………………………… 30 2.4 Comparison with Reported Mixers………………………………… 34 2.5 Summary…………………………………………………………… 35 2.6 References………………………………………………………… 36 CHAPTER 3 Ultra-broadband Doubly Balanced Monolithic Ring Mixers 3.1 Introduction ………………………………………………………… 39 3.2 16-44 GHz Compact Doubly Balanced Ring Mixer……………… 40 3.2.1 Circuit Design of the Compact Ring DBM………………… 40 3.2.2 Circuit Implementation and Measured Results……………… 43 3.3 Doubly Balanced Ring Mixer with Simple IF Extraction………… 47 3.3.1 Circuit Design of the Ring DBM……………………………… 47 3.3.2 Circuit Implementation……………………………………… 49 3.3.3 Experimental Results………………………………………… 50 3.4 11-40 GHz Doubly Balanced Ring Mixer………………………… 54 3.4.1 Circuit Design and Analysis………………………………… 54 3.4.2 Circuit Implementation and Results………………………… 58 3.5 Summary ………………………………………………………… 62 3.6 References ……………………………………………………… 63 CHAPTER 4 Sub-harmonic Mixer 4.1 Introduction………………………………………………………… 66 4.2 10-40 GHz CMOS Subharmonic Monolithic Mixer………………… 68 4.2.1 Circuit Design………………………………………………… 68 4.2.2 Circuit Implementation and Measured Results……………… 71 4.3 14-32 GHz Miniature Quadruple Subharmonic Monolithic Mixer… 75 4.3.1 Circuit Design and Implementation………………………… 75 4.3.2 Experimental Results………………………………………… 78 4.4 Novel IF Extraction Circuit for Subharmonic Mixer Design……… 81 4.4.1 Circuit Design and Analysis………………………………… 82 4.4.2 12-36 GHz Single-balanced Subharmonic Mixer and Simulated Results……………………………………………………………86 4.5 Summary…………………………………………………………… 89 4.6 References………………………………………………………… 90 CHAPTER 5 Conclusions and Future Works 5.1 Conclusions………………………………………………………… 94 5.2 Future Works………………………………………………………… 98 APPENDIX Passive Circuits A Planar 180° Hybrids Suitable for MMIC Design…………………… 99 A.1 180° Reverse-phase Hybrid Rings……………………………… 101 A.2 180° Hybrid Based on a Lange Coupler and +45° and -45° Phase Shifter………………………………………………………………… 107 B 180° Lumped Element Hybrid Based on the Capacitive Loading Coupled Line Section………………………………………………………………… 115 B.1 Circuit Design Concept……………………………………… 116 B.2 Implementation and Results…………………………………… 118 C Harmonics Suppression Wilkinson Power Divider………………… 122 C.1 Design of the Power Divider for Harmonics Suppression…… 123 C.2 Implementation and Results………………………………… 126 D Compact Balun Based on Microstrip EBG Cell and Interdigital Capacitor…………………………………………………………… 130 D.1 Design of Compact Balun…………………………………… 131 D.2 Implementation and Results………………………………… 134 E Summary…………………………………………………………… 137 F References………………………………………………………… 139 PUBLICATION LIST ……………………………………………………………144 VITA …………………………………………………………………………… 147

    Chapter 1 Introduction

    [1] I. Bahl, and P. Bhartia, Microwave solid state circuit design, Wiley-Interscience, 2003.
    [2] H. Z. Liu, C. H. Lin, C. K. Chu, H. K. Huang, M. P. Houng, C. H. Chang, C. L. Wu, C.S. Chang, and Y. H. Wang, “A single-supply Ku-band 1-Watt power amplifier MMIC with compact self-bial PHEMTs,” IEEE Microw. Wireless Compon. Lett., vol.16, no. 6, pp. 330-332, June 2006.
    [3] C. H. Lin, H. Z. Liu, C. K. Chu, H. K. Huang, C. C. Liu, C. H. Chang, C. L. Wu, C. S. Chang, and Y. H. Wang, “A compact 6.5 W PHEMT MMIC power amplifier for Ku-band applications,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 2, pp. 154-156, Feb. 2007.
    [4] F. Colomb, and A. Platzker, “A 3-Watt Q-band GaAs pHEMT power amplifier MMIC for high temperature operation,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2006, pp. 897-900.
    [5] O. S. A. Tang, K. H. G. Duh, S. M. J. Liu, P. M. Smith, W. F. Kopp, T. J. Rogers, and D. J. Pritchard, “Design of high-Power, high-efficiency 60-GHz MMICs using an improved nonlinear PHEMT model,” IEEE J. Solid-State Circuits, vol. 32, pp. 1326-1333, Sept. 1997.
    [6] W. R. Deal, X. B. Mei, V. Radisic, W. Yoshida, P. H. Liu, J. Uyeda, M. Barsky, T. Gaier, A. Fung, and R. Lai, “Demonstration of a S-MMIC LNA with 16-dB Gain at 340-GHz,” in Proc. Compound Semiconductor Integrated Circuits Symp., Oct. 2007, pp. 1–4.
    [7] Q. Sun, L. Krishnamurthy, V. T. Vo and A. A. Rezazadeh, “Compact inductors and baluns using multilayer technology,” in EMRS DTC Technical Conference, 2006.
    [8] K. Nishikawa, B. Piernas, T. Nakagawa, K. Araki, and K. Cho, “V-band fully integrated TX/RX single-chip 3-D MMICs using commercial GaAs pHEMT technology for high speed wireless application,” in GaAs IC Symp. Dig., 2003, pp. 97–100.
    [9] H. Hirano, K. Nishikawa, I. Toyoda, S. Aoyama, S. Sugitani, and K. Yamasaki, “Three-dimensional passive circuit technology for ultra-compact MMICs,” IEEE Trans. Microw. Theory Tech., vol. 43, pp. 2845–2850, Dec. 1995.
    [10] T. Tokumitsu, N. Hirano, K. Yamasaki, C. Yamaguchi, K. Nishikawa, and M. Aikawa, “Highly integrated three-dimensional MMIC technology applied to novel masterslice GaAs- and Si-MMICs,” IEEE J. Solid-State Circuits, vol. 32, pp. 1334–1341, Sept. 1997.
    [11] K. Nishikawa, K. Kamogawa, B. Piernas, M. Tokumitsu, S. Sugitani, I. Toyoda, and K. Araki, “Three-dimensional MMIC technology for low-cost millimeter-wave MMICs,” IEEE J. Solid-State Circuits, vol. 36, pp. 1351–1359, Sept. 2001.
    [12] I. S. Ishak, R. A. Keating, and C. K. Chakrabarty, “RF substrate noise characterization for CMOS 0.18 μm,” in Proc. RF and Microwave Conf., 2004, pp. 60–63.
    [13] D. M. Pozar, Microwave and RF design of wireless systems, John Wiley & Sons Inc., 2000.
    [14] J. Berenz, M. LaCon, and M. Luong, “Single chip Ka-band transceiver,” in 1991 IEEE Int. Microwave Symp. Dig., June 1991, vol. 2, pp. 517–520.
    [15] K. Sasaki, J. Utsu, K. Matsugatani, K. Hoshino, T. Taguchi, and Y. Ueno “InP MMICs for V-band FMCW radar,” in IEEE MTT-S Int. Microw. Symp. Dig., 1997, pp. 937-940.
    [16] O. Vaudescal, B. Lefebvre, V. Lehoué, and P. Quentin, “A Highly Integrated MMIC Chipset for 60 GHz Broadband Wireless Applications, ” in IEEE MTT-S Int. Microw. Symp. Dig., 2002, pp. 1729-1732.
    [17] S. E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 40, pp. 2174–2186, Nov. 2005.
    [18] K.W. Chang, G.S. Dow, H. Wang, T.N. Chen, K. Tan, B. Allen, I. Berenz, J. Wehling, and R. Lin, “A W-band single-chip transceiver for FMCW radar,” in 1993 IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp. Dig., 1993, pp. 41–44.
    [19] S. Emami, C.H. Doan, A.M. Niknejad, and R.W. Brodersen, “A highly integrated 60 GHz CMOS front-end receiver,” in Proc. Int. Solid-State Circuits Conf. (ISSCC), Feb. 2007, pp. 190–191.
    [20] D. Huang, R. Wong, G. Qun, N.Y. Wang, T.W. Ku, C. Chien, and M.-C.F. Chang, “A 60 GHz CMOS differential receiver front-end using on-chip transformer for 1.2 volt operation with enhanced gain and linearity,” in Symp. VLSI Circuits Dig., 2006, pp. 144–145.
    [21] A. Parsa, and B. Razavi, “A 60 GHz CMOS receiver using a 30 GHz LO,” in Proc. Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 190–191.
    [22] E. Laskin, M. Khanpour, R. Aroca, K.W. Tang, P. Garcia, S.P. Voinigescu, “A 95 GHz receiver with fundamental-frequency VCO and static frequency divider in 65 nm digital CMOS,” in Proc. Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 180–181.
    [23] S. A. Mass, Microwave mixers, 2nd ed. Norwood, MA: Artech House, 1993.

    Chapter 2

    [1] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
    [2] S. A. Maas and K.W Chang, “A broadband, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. Microw. Theory Tech., vol. MTT-41, no. 12, pp. 2330-2335, Dec. 1993.
    [3] Y. I. Ryu, K. W. Kobayashi, and A. K. Oki, “A monolithic broadband doubly balanced EHF HBT star mixer with novel microstrip baluns,” in IEEE MTT-S Int. Microw. Symp. Dig., 1995, pp. 119-122.
    [4] K. W. Yeom and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2435 - 2440, July 2005.
    [5] C.H. Lin, J.C. Chiu, C.M Lin, Y.A. Lai, and Y.H. Wang, “A variable conversion gain star mixer for Ka-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802-804, Nov. 2007.
    [6] S. S. Kim, J. H. Lee, and K. W. Yeom, “A novel planar dual balun for doubly balanced star mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no.9, pp. 440-442, Sep. 2004.
    [7] C. Y. Chang, C. W. Tang, and D. C. Niu, “Ultra-boad-band doubly balanced star mixers using planar Mouw’s hybrid junction,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 6, pp. 1077 - 1085, Jun. 2001.
    [8] M. Shimozawa, K. Itoh, Y. Sasaki, H. Kawano, Y. Isota, and O. Ishida,“A parallel connected Marchand balun using spiral shaped equal length coupled lines,” in IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA, June 1999, pp. 1737–1740.
    [9] Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “A silicon monolithic spiral transmission line balun with symmetrical design,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 182–184, Apr. 1999.
    [10] Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “Modeling of monolithic RF spiral transmission-line balun,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 2, pp. 393-395, Feb. 2001.
    [11] C. C. Kuo, C. L. Kuo, C. J. Kuo, S. A. Maas and H. Wang, “Novel miniature and broadband millimeter-wave monolithic star mixers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 793 - 802, Apr. 2008.
    [12] C. H. Lin, C. M. Lin, Y. A. Lai, and Y. H. Wang, “A 26-38GHz monolithic doubly balanced mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no.9, pp. 623-625, Sep. 2008.
    [13] J. Lange, "Interdigitated stripline quadrature hybrid," IEEE Trans. Microw. Theory Tech., vol. MTT-17, pp. 1150-1151, Dec. 1969.
    [14] C. M. Lin, H. K. Lin, C. F. Lin, Y. A. Lai, C. H. Lin, and Y. H. Wang, “A 16-44GHz compact doubly balanced monolithic ring mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 620-622, Sep. 2008.
    [15] D. An, S. C. Kim, J. D. Park, M. K. Lee, H. C. Park, S. D. Kim, W. J. Kim, and J. K. Rhee, “A novel 94-GHz MHEMT resistive mixer using a micromachined ring coupler,” IEEE Microw. Wireless Compon. Lett., vol.16, no.6, pp. 467-469, Aug. 2006.
    [16] D. M. Pozar, Microwave engineering, 2nd Ed. New York: Wiley 1998.

    Chapter 3

    [1] S. A. Maas, F. M. Yamada, A. K. Oki, N. Matovelle, and C. Hochuli, “An 18-40 GHz monolithic ring mixer,” in IEEE WIC Symp. Dig., 1998, pp. 29-32.
    [2] S. A. Maas and K.W Chang, “A broadband, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. Microw. Theory Tech., vol. MTT-41, no. 12, pp. 2330-2335, Dec. 1993.
    [3] K.W. Kobayashi, R. Kasody, A.K. Oki, S. Dow, B. Allen, and D.C. Streit, “K-Band double balanced mixer using GaAs HBT THz Schottky diodes,” in IEEE MTT-S Int. Microw. Symp. Dig., 1994, pp. 1163- 1166.
    [4] S. Gunnarsson, K. Yhland, and H. Zirath, “pHEMT and mHEMT ultra wideband millimeterwave balanced resistive mixers,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, Jun. 2004, pp. 1141-1144.
    [5] M. Yu, and R. H. Walden, A. E. Schmitz, and M. Lui, “Ka/Q-band doubly balanced MMIC mixers with low LO power,” IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp.424-426, Oct. 2000.
    [6] C.H. Lin, C.M. Lin, J.C. Chiu, T.Y. Tsai and Y.H. Wang, “A Ka-band monolithic doubly-balanced mixer,” in IEEE CSIC Symp. Dig., 2006, pp 69-72.
    [7] C.H. Lin, C.M. Lin, Y.A. Lai and Y.H. Wang, “A 26-38 GHz monolithic doubly balanced mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp.623-625, Sep. 2008.
    [8] M. Shimozawa, K. Itoh, Y. Sasaki, H. Kawano, Y. Isota, and O. Ishida,“A parallel connected Marchand balun using spiral shaped equal length coupled lines,” in IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA, Jun. 1999, pp. 1737–1740.
    [9] Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “A silicon monolithic spiral transmission line balun with symmetrical design,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 182–184, Apr. 1999.
    [10] Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “Modeling of monolithic RF spiral transmission-line balun,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 2, pp. 393-395, Feb. 2001.
    [11] C. J. Trantanella, “Ultra-small MMIC mixers for K- and Ka-band communications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2000, vol.2, pp. 647-650.
    [12] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
    [13] M. Morgan, and S. Weinreb, “A monolithic HEMT diode balanced mixer for 100-140 GHz,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 1, pp. 99-102, 2001.
    [14] D. M. Pozar, Microwave engineering, 2nd Ed. New York: Wiley 1998.
    [15] D. An, S. C. Kim, J. D. Park, M. K. Lee, H. C. Park, S. D. Kim, W. J. Kim, and J. K. Rhee, “A novel 94-GHz MHEMT resistive mixer using a micromachined ring coupler,” IEEE Microw. Wireless Compon. Lett., vol.16, no.6, pp. 467-469, Aug. 2006.
    [16] C. W. Tang, and C. Y. Chang, “A semi-lumped balun fabricated by low temperature co-fired ceramic,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, 2002, pp. 2201-2204.
    [17] C.M. Lin, C.H. Lin, J.C. Chiu, and Y.H. Wang, “An ultra-broadband doubly balanced monolithic ring mixer for Ku- to Ka-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 733-735, Oct. 2007.
    [18] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 1999, pp. 136–137.
    [19] K. S. Ang and I. D. Robertson, “Analysis and design of impedance-transforming planar Marchand baluns,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 2, pp. 402–406, Feb. 2001.

    Chapter 4

    [1] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
    [2] M. Cohn, J. E. Degenford, and B. A. Newman, “ Harmonic mixing with an antiparallel diode pair,” IEEE Trans. Microwave Theory Tech., vol. MTT-23, no.8, pp. 667-673, Aug. 1975.
    [3] K. Itoh, A. Iida, Y. Sasaki, and S. Urasaki, “A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair,’’ in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, 1991, p. 879-882.
    [4] S. Raman, F. Rucky, and G. M. Rebeiz, “A high-performance W-Band uniplanar subharmonic mixer,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 6, pp. 955–962, Jun. 1997.
    [5] M. W. Chapman and S. Raman, “A 60-GHz uniplanar MMIC 4X subharmonic mixer,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 11, pp. 2580–2588, Nov. 2002.
    [6] K. Kanaya, K. Kawakami, T. Hisaka, T. Ishikawa, and S. Sakamoto, “A 94 GHz high performance quadruple subharmonic mixer MMIC,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, vol. 2, pp. 1249–1252.
    [7] W.-Y. Uhm, W.-S. Sul, H.-J. Han, S.-C. Kim, H.-S. Lee, D. An, S.-D. Kim, D.-H. Shin, H.-M. Park, and J.-K. Rhee, “A high performance v-band monolithic quadruple sub-harmonic mixer,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2003, vol. 2, pp. 1319–1322.
    [8] S. Sarkar, P. Sen, S. Pinel, C. H. Lee, and J. Laskar, “Si-based 60GHz 2X subharmonic mixer for multi-gigabit wireless personal area network application,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2006, pp. 1830–1833.
    [9] C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A 23–37 GHz miniature MMIC subharmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol.17, no.9, pp. 679-681, Sep. 2007.
    [10] C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 95-97,Feb. 2009.
    [11] H. Zirath, I. Angelov, and N. Rorsman, “A millimeterwave subharmonically pumped resistive mixer based on a heterostructure field effect transistor technology,” in IEEE MTT-S Int. Microw. Symp. Dig., 1992, pp. 599–602.
    [12] K. S. Ang, A. H. Baree, S. Nam, and I. D. Robertson, “A millimeterwave monolithic subharmonically pumped resistive mixer,” in Proc. Asia Pacific Microw. Conf., 1999, pp. 222–225
    [13] M. F. Lei, P. S. Wu, T. W. Huang, and H. Wang, “Design and analysis of miniature W-band MMIC subharmonically pumped resistive mixer,” in IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 235–238.
    [14] J. J. Hung, T. M. Hancock, and G. M. Rebeiz, “A 77 GHz SiGe sub-harmonic balanced mixer,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2167–2173, Nov. 2005.
    [15] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.
    [16] B. R. Jackson and C. E. Saavedra, “A CMOS Ku-band 4x subharmonic mixer,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1351–1359, Jun. 2008.
    [17] B. Razavi, “CMOS technology characterization for analog and RF design,” IEEE J. Solid-State Circuits, vol. 34, pp. 268–276, Mar. 1999.
    [18] F. Ellinger, L. C, Rodoni, G. Sialm, C.Kromer, G. von Buren, M. L. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, and H. Jackel, “30-40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp.1382-1391, May 2004.
    [19] S. B. Chon, “A class of broadband three-port TEM-mode hybrids,” IEEE Trans. Microw. Theory Tech., vol. MTT-16, pp. 110-1116, Feb. 1968.
    [20] S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, and M. Chongcheawchamnan, “High isolation and compact size microstrip hairpin diplexer,” IEEE Microw. Wireless Compon. Lett., vol.15, no.2, pp. 101-103, Feb. 2005.
    [21] M. H. Weng, C. Y. Hung, and Y. K. Su, “A hairpin line diplexer for direct sequence ultra-wideband wireless communications,” IEEE Microw. Wireless Compon. Lett., vol.17, no.7, pp. 519-521, July 2007.
    [22] M. W. Medley, Microwave and RF Circuits: Analysis, Synthesis, and Design, Artech House, Inc., Norwood, MA, 1992.
    [23] H. K. Chiou, W. R. Lian, and T. Y Yang, “A miniature Q-band balanced sub-harmonically pumped image rejection mixer,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 6, pp.463-465, June 2007
    [24] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 1999, pp. 405–407.
    [25] B. J. Minnis, and M. Healy, “New broadband balun structures for monolithic microwave integrated circuits” in IEEE MTT-S Int. Microw. Symp. Dig., 1991, pp. 425–428.
    [26] J. Rogers, and R. Bhatia, “A 6 to 20 GHz planar balun using a Wilkinson divider and Lange couplers,” in ibid, 1991, pp. 865-868.

    Appendix

    [1] C. Y. Pon, “Hybrid-ring directional couplers for arbitrary power division,” IEEE Trans. Microw. Theory Tech., vol. MTT-9, pp. 529–535, Nov. 1961.
    [2] S. March, “A wideband stripline hybrid ring,” IEEE Trans. Microw. Theory Tech., vol. MTT-16, p. 361, June 1968.
    [3] S. Rehnmark, “Wide-band balanced line microwave hybrids,” IEEE Trans. Microw. Theory Tech., vol. MTT-25, pp. 825-830, Oct. 1977.
    [4] B. R. Heimer, L. Fan, and K. Chang, “Uniplanar hybrid couplers using. asymmetrical coplanar striplines,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp. 2234-2240, Dec. 1997.
    [5] T. Wang and K. Wu, “Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC’s,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 198-206, Feb. 1999.
    [6] C. Y. Chang, and C. C. Yang, “A novel broad-band chebyshev-response rat-race ring coupler,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 4, pp. 455-462, Apr. 1999.
    [7] T. Kawai, Y. Kokubo, and I. Ohta, “Broadband lumped-element 180-degree hybrids utilizing lattice circuits,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 1, May 2001, pp. 47-50.
    [8] C. Y. Chang, C. C. Yang, and D. C. Niu, “A multioctave bandwidth rat-race singly balanced mixer,” IEEE Microw. Guided Wave Lett., vol. 9, no.1, pp. 37–39, Jan. 1999.
    [9] D. An, S. C. Kim, J. D. Park, M. K. Lee, H. C. Park, S. D. Kim, W. J. Kim, and J. K. Rhee, “A novel 94-GHz MHEMT resistive mixer using a micromachined ring coupler,” IEEE Microw. Wireless Compon. Lett., vol.16, no.6, pp. 467-469, Aug. 2006.
    [10] M. Kumar, R. J. Menna, and Ho-Chung Huang, “Planar broad-band 180° hybrid power divider/combiner circuit,” IEEE Trans. Microw. Theory Tech., vol. MTT-29, no. 12, pp. 1233-1235, Nov. 1981.
    [11] K. S. Ang, and Y. C. Leong, “Converting baluns into broad-band impedance-transforming 180° hybrids,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1990-1995, Aug. 2002.
    [12] Z. Y. Liu, and R. M. Weikle, “A 180° hybrid based on interdigitally coupled asymmetrical artificial transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2006, pp. 1555-1558.
    [13] C.H. Chi, and C.Y. Chang, “A new class of wideband multisection 180° hybrid rings using vertically installed planar couplers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2478-2486, June 2006.
    [14] J. Rogers, and R. Bhatia, “A 6 to 20 GHz planar balun using a Wilkinson divider and Lange couplers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jul. 1991, pp. 865-868.
    [15] B. J. Minnis, and M. Healy, “New broadband balun structures for monolithic microwave integrated circuit,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, June 1991, pp. 425-428.
    [16] J. Lange, "Interdigitated stripline quadrature hybrid," IEEE Trans. Microw. Theory Tech., vol. MTT-17, pp. 1150-1151, Dec. 1969.
    [17] D. Kajfez, Z. Paunovic, and S. Pavlin, “Simplified design of Lange coupler,” IEEE Trans. Microw. Theory Tech., vol. MTT-26, pp.806-808, Oct. 1978.
    [18] R.Waugh and D.LaCombe, “Unfolding the Lange coupler,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 777-779, 1972.
    [19] D. M. Pozar, Microwave engineering, 2nd ed. New York: Wiley 1998.
    [20] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 1999.
    [21] K. S. Ang and I. D. Robertson, “Analysis and design of impedance-transforming planar Marchand baluns,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 2, pp. 402–406, Feb. 2001.
    [22] T. Fujii and I. Ohta, “Size-reduction of coupled-microstrip 3 dB forward couplers by loading with periodic shunt capacitive stubs,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2005, pp. 1235-1238.
    [23] E. J. Wilkinson, “An N-way power divider,” IEEE Trans. Microw. Theory Tech., vol. MTT-8, pp. 116-118, Jan. 1960.
    [24] J.C. Chiu, C.P. Chang, M.P. Houng, and Y.H. Wang, “A 12-36 GHz PHEMT MMIC balanced frequency tripler,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp.19-21, Jan. 2006.
    [25] K.-H. Yi and B. Kang, “Modified wilkinson power divider for nth harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 5, pp. 178–180, May 2003.
    [26] D-J. Woo and T.-K. Lee, “Suppression of Harmonics in Wilkinson Power Divider Using Dual-Band Rejection by Asymmetric DGS,” IEEE Trans. Microw. Theory Tech., vol. MTT-53, No. 6, pp. 2139–2144, June 2005.
    [27] Q. Xue, K. M. Shum, and C. H. Chan, “Novel 1-D microstrip PBG cell,” IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp. 403–405, Oct. 2000.
    [28] K.M. Shum, Q. Xue, and C.H. Chan, “A Novel Microstrip Ring Hybrid. Incorporating a PBG Cell,” IEEE Microw. Wireless Compon. Lett., vol. 11, no. 6, pp. 258–260, June 2001.
    [29] K. M. Shum, Q. Xue, and C. H. Chan, “Curved PBG Cell and Its Applications,” IEEE Microwave Conference, vol. 2, pp. 767–770, 2001.
    [30] K. M. Shum, Q. Xue, W. N. Chau, and C. H. Chan, “A Compact Wilkinson Power Divider with Curved PBG Cells,” Microwave And Optical Technology Letters, vol. 31, no. 2, pp. 81–83, Oct. 2001.
    [31] R. E. Collin, Foundations for Microwave Engineering. NewYork: Mc-Graw-Hill, 1966.
    [32] B.-L. Ooi, “Compact EBG In-Phase Hybrid-Ring Equal Power Divider,” IEEE Trans. Microw. Theory Tech., vol. MTT-53, no. 7, pp. 2329– 2334, July 2005.
    [33] X. Li, L. Yang, S.-X. Gong, and Y.-J. Yang, “Dual-band and wideband design of a printed dipole antenna integrated with dual-band balun,” Progress In Electromagnetics Research Letters, Vol. 6, pp. 165–174, 2009.
    [34] N. Marchand, “Transmission line conversion transformers,” Electronics, vol. 17, no. 12, pp. 142–145, Dec. 1942.
    [35] J. S. Sun and G. Y. Chen, “A novel design of the planar coupled line balun,” in IEEE Microwave and Millimeter Wave Technology Proceedings, Aug. 2002, pp. 1117–1120.
    [36] Y. S Lin. and C. H. Chen, “Novel lumped-element uniplanar transitions” IEEE Trans. Microw. Theory Tech., vol. 49, no. 12, pp. 2322–2330, Dec. 2001.
    [37] K. S. Kim, C. S. Kim, I. S. Song and D. Ahn, “A novel balun with vertically periodic defected ground structure,” in IEEE Region 10 Conf., November 2006, pp. 1–4.
    [38] G. D. Alley, “Interdigital capacitors and their application to lumped-element microwave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 18, no. 12, pp. 1028–1033, 1970.
    [39] I. Bahl and P. Bhartia, Microwave Solid State Circuit Design, 2nd edition, Wiley, New York, 2003.
    [40] Z. Y. Zhang, Y. X. Guo, L. C. Ong and M. Y. W. Chia, “A new wide-band planar balun on a single-layer PCB,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 6, pp. 416-418, June 2005.

    下載圖示 校內:2011-03-18公開
    校外:2012-03-04公開
    QR CODE