| 研究生: |
莊承諺 Chuang, Cheng-Yen |
|---|---|
| 論文名稱: |
以鎂改質石墨氮化碳光觸媒於可見光下降解苯乙烯之研究 Photocatalytic degradation of styrene by Mg-modified g-C3N4 photocatalyst under the visible light |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 光催化 、苯乙烯 、石墨氮化碳 、鎂摻雜 、可見光 、自由基機制 |
| 外文關鍵詞: | photocatalysis, styrene, graphitic carbon nitride, magnesium modifying, visible light, free radical mechanism |
| 相關次數: | 點閱:51 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對可見光下苯乙烯之光催化降解進行探討,並以摻雜鎂(Mg)的石墨氮化碳作為光催化劑。藉由調整Mg摻雜比例(0.01–0.5 wt%)合成系列催化劑,並且利用XRD、XPS、TEM、BET、PL、EPR等儀器進行材料分析。結果顯示,0.05 wt% Mg/g-C₃N₄樣品表現最佳,其擁有最低的光致發光強度與最高的超氧自由基(•O₂⁻)與單態氧(¹O₂)產生能力。反應參數方面,溫度與苯乙烯濃度上升可有效提升反應速率,而相對濕度增加則因水分子競爭吸附而降低降解效率。在循環實驗中,此催化劑仍可維持超過80%初始效率,展現良好穩定性。反應動力學以Langmuir-Hinshelwood模型模擬最為合適,經過計算獲得表觀活化能為24.9 kJ/mol。最終藉由自由基抑制與GC-MS分析,確認反應主要經由•O₂⁻與¹O₂進行,中間產物包含formic acid ethyl ester、1,4-dioxane及acetone等。整體而言,本研究所開發之Mg摻雜g-C₃N₄具備優異的苯乙烯降解效能與再利用潛力,為VOCs處理提供可行性方案。
This study investigates the photocatalytic degradation of styrene under visible light using magnesium-modified graphitic carbon nitride (Mg/g-C₃N₄) as the catalyst. A series of catalysts with varying Mg doping ratios (0.01–0.5 wt%) were synthesized and characterized by XRD, XPS, TEM, BET, PL, and EPR techniques. Among them, 0.05 wt% Mg/g-C₃N₄ exhibited superior photocatalytic activity, with the lowest photoluminescence intensity and the highest generation of superoxide (•O₂⁻) and singlet oxygen (¹O₂). Experimental results revealed that higher temperatures and styrene concentrations enhanced the reaction rate, while increased humidity suppressed the efficiency due to competitive adsorption. The catalyst maintained over 80% of its original performance after six cycles, confirming good stability and reusability. Kinetic modeling based on the Langmuir-Hinshelwood mechanism yielded an apparent activation energy of 24.9 kJ/mol. Reactive species trapping and GC-MS analysis revealed that the degradation proceeded primarily through •O₂⁻ and ¹O₂ pathways, generating intermediates such as formic acid ethyl ester, 1,4-dioxane, and acetone. This work demonstrates that Mg/g-C₃N₄ is a promising candidate for efficient and reusable VOCs photodegradation under visible light.
Ahmad, I. (2020). Comparative study of metal (Al, Mg, Ni, Cu and Ag) doped ZnO/g-C3N4 composites: Efficient photocatalysts for the degradation of organic pollutants. Separation and Purification Technology, 251, 117372.
Ahmadi, A., Hajilou, M., Zavari, S., & Yaghmaei, S. (2023). A comparative review on adsorption and photocatalytic degradation of classified dyes with metal/non-metal-based modification of graphitic carbon nitride nanocomposites: Synthesis, mechanism, and affecting parameters. Journal of Cleaner Production, 382, 134967.
Akpan, U. G., & Hameed, B. H. (2010). The advancements in sol–gel method of doped-TiO2 photocatalysts. Applied Catalysis A: General, 375(1), 1-11.
al Mamari, S., Kuvarega, A., & Selvaraj, R. (2021). Recent advancements in the development of graphitic like carbon nitride (G-C3N4) photocatalyst for volatile organic compounds removal: A review. DESALINATION AND WATER TREATMENT, 235, 141-176.
Alaghmandfard, A., & Ghandi, K. (2022). A Comprehensive Review of Graphitic Carbon Nitride (g-C3N4)–Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. Nanomaterials, 12(2).
Ali, H., Ajmal, Z., Boukhris, I., Alenad, A. M., Al-Buriahi, M. S., Abu-Dief, A. M., Alsaiari, N. S., Hayat, A., Hassan, H. M. A., Liang, Y., & Yue, D. (2025). Recent advances, synthesis, modifications and photogenerated carrier dynamics of g-C3N4 for photocatalytic water splitting. International Journal of Hydrogen Energy, 100, 79-128.
Al-Madanat, O., AlSalka, Y., Dillert, R., & Bahnemann, D. W. (2021). Photocatalytic H2 Production from Naphthalene by Various TiO2 Photocatalysts: Impact of Pt Loading and Formation of Intermediates. Catalysts, 11(1).
Arora, I., Chawla, H., Chandra, A., Sagadevan, S., & Garg, S. (2022). Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorganic Chemistry Communications, 143, 109700.
Ashraf, M., Hussain, F., Aziz, H., Riaz, U., Saleem, M. H., Javid, A., Nosheen, A., Ali, A., Okla, M. K., Saleh, I. A., Alaraidh, I. A., & Abdel-Maksoud, M. A. Fabrication and characterization of novel, cost-effective graphitic carbon nitride/Fe coated textile nanocomposites for effective degradation of dyes and biohazards. (2405-8440 (Print)).
Augusto, O., Truzzi, D. R., & Linares, E. (2023). Electron paramagnetic resonance (EPR) for investigating relevant players of redox reactions: Radicals, metalloproteins and transition metal ions. Redox Biochemistry and Chemistry, 5-6, 100009.
Azizi, N., Farzaneh, F., & Farhadi, E. (2023). Streamlining efficient and selective synthesis of benzoxanthenones and xanthenes with dual catalysts on a single support. Scientific Reports, 13(1), 16469.
Baggerman, J. A. G., Visser, R. J., & Collart, E. J. H. (1994). Ion‐induced etching of organic polymers in argon and oxygen radio‐frequency plasmas. Journal of Applied Physics, 75(2), 758-769. https://doi.org/10.1063/1.356481
Baghdadi, Y., Temerov, F., Cui, J., Daboczi, M., Rattner, E., Sena, M. S., Itskou, I., & Eslava, S. (2023). Cs3Bi2Br9/g-C3N4 Direct Z-Scheme Heterojunction for Enhanced Photocatalytic Reduction of CO2 to CO. Chemistry of materials : a publication of the American Chemical Society, 35(20), 8607–8620.
Baudys, M., Pausova, S., Praus, P., Brezová, V., Dvoranová, D., Barbierikova, Z., & Krýsa, J. (2020). Graphitic Carbon Nitride for Photocatalytic Air Treatment. Materials, 13, 3038.
Bhattacharjee, B., Mishra, S. R., Gadore, V., & Ahmaruzzaman, M. (2025). Carbon-based Composites for Environmental Clean-up: Advances in Biochar, g-C3N4, Graphene Oxide and CNTs. Journal of the Taiwan Institute of Chemical Engineers, 168, 105918.
Chabib, L., Nursal, Miskam, M., Mohd Kaus, N. H., Shafie, M. H., Hamid, M., Saragi, I. R., Isnaeni, I., Amilia, D., Dalimunthe, I. B., & Wijoyo, H. (2025). Optimization of g-C3N4 nanoparticles on structural, morphological, and optical properties as organic pollutants adsorbent in glycerin. Case Studies in Chemical and Environmental Engineering, 11, 101057.
Chahkandi, M., Zargazi, M., Ahmadi, A., Koushki, E., & Ghasedi, A. (2021). In situ synthesis of holey g-C 3 N 4 nanosheets decorated by hydroxyapatite nanospheres as efficient visible light photocatalyst. RSC Advances, 11, 31174-31188.
Chatterjee, S., & Kar, A. (2022). Synergistic influence of FRET, bulk recombination centers, and charge separation in enhancing the visible-light-driven photocatalytic activity of Cu2+-ion-doped ZnO nanoflowers. Physical Chemistry Chemical Physics, 24.
Chebanenko, M. I., Lebedev, L. A., Ugolkov, V. L., Prasolov, N. D., Nevedomskiy, V. N., & Popkov, V. I. (2022). Chemical and structural changes of g-C3N4 through oxidative physical vapor deposition. Applied Surface Science, 600, 154079.
Chebanenko, M. I., Lebedev, L. A., Ugolkov, V. L., Prasolov, N. D., Nevedomskiy, V. N., & Popkov, V. I. (2022). Chemical and structural changes of g-C3N4 through oxidative physical vapor deposition. Applied Surface Science, 600, 154079.
Chen, Q., Dou, H., Zheng, S., Rao, X., & Zhang, Y. (2019). Photocatalytic H2 evolution and MB degradation over nickel-doped graphitic carbon nitride microwires under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 382, 111931.
Chen, Y.-W., & Hsu, Y.-H. (2021). Effects of Reaction Temperature on the Photocatalytic Activity of TiO2 with Pd and Cu Cocatalysts. Catalysts, 11(8).
Chojer, H., Branco, P. T. B. S., Martins, F. G., Alvim-Ferraz, M. C. M., & Sousa, S. I. V. (2024). Source identification and mitigation of indoor air pollution using monitoring data – Current trends. Environmental Technology & Innovation, 33, 103534.
Cui, T., Su, Y., Fu, X., Zhu, Y., & Zhang, Y. (2022). The key role of surface hydroxyls on the activity and selectivity in photocatalytic degradation of organic pollutants and NO removal. Journal of Alloys and Compounds, 921, 165931.
Dai, H., Gao, X., Liu, E., Yang, Y., Hou, W., Kang, L., Fan, J., & Hu, X. (2013). Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition. Diamond and Related Materials, 38, 109-117.
Ding, L., Hou, Y., Liu, H., Peng, J., Cao, Z., Zhang, Y., Wang, B., Cao, X., Chang, Y., Wang, T., & Liu, G. (2023). Alcohols as Scavengers for Hydroxyl Radicals in Photocatalytic Systems: Reliable or Not? ACS ES&T Water, 3(11), 3534-3543.
Dong, X., Zhang, S., Wu, H., Kang, Z., & Wang, L. (2019). Facile one-pot synthesis of Mg-doped g-C3N4 for photocatalytic reduction of CO2 [10.1039/C9RA04606B]. RSC Advances, 9(49), 28894-28901.
Dong, X., Zhang, S., Wu, H., Kang, Z., & Wang, L. (2019). Facile one-pot synthesis of Mg-doped g-C 3 N 4 for photocatalytic reduction of CO 2. RSC Advances, 9, 28894-28901.
Duan, Y., Li, J., Jia, D., Yao, H., Shang, X., & Li, C. (2022). One-step synthesis of Mg-doped g-C3N4 nanosheets for efficient photo-Fenton-like catalysis. Diamond and Related Materials, 129, 109313.
El-Shazly, A. N., Rashad, M. M., Abdel-Aal, E. A., Ibrahim, I. A., El-Shahat, M. F., & Shalan, A. E. (2016). Nanostructured ZnO photocatalysts prepared via surfactant assisted Co-Precipitation method achieving enhanced photocatalytic activity for the degradation of methylene blue dyes. Journal of Environmental Chemical Engineering, 4(3), 3177-3184.
Enesca, A. (2021). The Influence of Photocatalytic Reactors Design and Operating Parameters on the Wastewater Organic Pollutants Removal—A Mini-Review. Catalysts, 11(5).
Fallahizadeh, S., Gholami, M., Rahimi, M. R., Esrafili, A., Farzadkia, M., & Kermani, M. (2023). Enhanced photocatalytic degradation of amoxicillin using a spinning disc photocatalytic reactor (SDPR) with a novel Fe3O4@void@CuO/ZnO yolk-shell thin film nanostructure. Scientific Reports, 13(1), 16185.
Fatimah, I., Sulistyowati, R. Z., Wijayana, A., Purwiandono, G., & Sagadevan, S. (2023). Z-scheme NiO/g-C3N4 nanocomposites prepared using phyto-mediated nickel nanoparticles for the efficient photocatalytic degradation. Heliyon, 9(5), e16232.
Fitri, M., Ota, M., Hirota, Y., Uchida, Y., Hara, K., Ino, D., & Nishiyama, N. (2017). Fabrication of TiO 2 -graphene photocatalyst by direct chemical vapor deposition and its anti-fouling property. Materials Chemistry and Physics, 198.
Fitri, M. A., Ota, M., Hirota, Y., Uchida, Y., Hara, K., Ino, D., & Nishiyama, N. (2017). Fabrication of TiO2-graphene photocatalyst by direct chemical vapor deposition and its anti-fouling property. Materials Chemistry and Physics, 198, 42-48.
Guo, T., Bai, Z., Wu, C., & Zhu, T. (2008). Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers: PCO rate and intermediates accumulation. Applied Catalysis B: Environmental, 79(2), 171-178.
Ha, N., Le Minh, C., & Ha, N. (2020). Understanding the influence of single metal (Li, Mg, Al, Fe, Ag) doping on the electronic and optical properties of g-C 3 N 4 : a theoretical study. Molecular Simulation, 47, 1-8.
Han, Z., Wang, N., Fan, H., & Ai, S. (2017). Ag nanoparticles loaded on porous graphitic carbon nitride with enhanced photocatalytic activity for degradation of phenol. Solid State Sciences, 65.
He, F., Wang, Z., Li, Y., Peng, S., & Liu, B. (2020). The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Applied Catalysis B: Environmental, 269, 118828.
Herrmann, J.-M. (1999). Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53(1), 115-129.
Hietala, J., Vuori, A., Johnsson, P., Pollari, I., Reutemann, W., & Kieczka, H. (2016). Formic Acid. In B. Elvers (Ed.), Ullmann's Encyclopedia of Industrial Chemistry (Vol. A12). Wiley-VCH Verlag GmbH & Co.
Hinshelwood, C. N. S. (1926). On the theory of unimolecular reactions. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 113, 230-233.
Hong, C.-S., Wang, Y., & Bush, B. (1998). Kinetics and products of the TiO2, photocatalytic degradation of 2-chlorobiphenyl in water. Chemosphere, 36(7), 1653-1667.
Huang, Z., Shanmugam, M., Liu, Z., Brookfield, A., Bennett, E. L., Guan, R., Vega Herrera, D. E., Lopez-Sanchez, J. A., Slater, A. G., McInnes, E. J. L., Qi, X., & Xiao, J. (2022). Chemical Recycling of Polystyrene to Valuable Chemicals via Selective Acid-Catalyzed Aerobic Oxidation under Visible Light. Journal of the American Chemical Society, 144(14), 6532-6542.
Ibhadon, A. O., & Fitzpatrick, P. (2013). Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts, 3(1), 189-218.
Ionică, G., Orbeci, C., Bobirica, L., Bobirica, C., & Pascu, L. (2023). Key Principles of Advanced Oxidation Processes: A Systematic Analysis of Current and Future Perspectives of the Removal of Antibiotics from Wastewater. Catalysts, 13, 1280.
Ismael, M. (2020). A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. Journal of Alloys and Compounds, 846, 156446.
Jabbar, Z. H., & Graimed, B. H. (2022). Recent developments in industrial organic degradation via semiconductor heterojunctions and the parameters affecting the photocatalytic process: A review study. Journal of Water Process Engineering, 47, 102671.
Jaiswal, M., & Choudhury, B. (2022). Role of dopants and defects on the photocatalytic performance of g-C3N4 under visible light and sub-band gap excitation. Journal of Physics D: Applied Physics, 55.
Jasrotia, R., Raj, K., Suman, Ramya, M., Kumar, R., Pathania, D., Kumar, Y., & Kandwal, A. (2024). Magnesium ferrites and their composites based photocatalysts: Synthesis approaches, effect of doping, and operational parameters on photocatalytic performance for wastewater remediation. Journal of Magnesium and Alloys, 12(10), 3996-4044.
Jayaraman, V., Ayappan, C., & Mani, A. (2022). Facile preparation of bismuth vanadate-sheet/carbon nitride rod-like interface photocatalyst for efficient degradation of model organic pollutant under direct sunlight irradiation. Chemosphere, 287, 132055.
Jung, B., Deng, W., Li, Y., Batchelor, B., & Abdel-Wahab, A. (2020). Simulated solar light-driven photocatalytic degradation of trichloroethylene in water using BiOBr promoted by sulfite addition. Environmental Sciences Europe, 32(1), 8.
Kalambate, P. K., Thirabowonkitphithan, P., Kaewarsa, P., Permpoka, K., Radwan, A. B., Shakoor, R. A., Kalambate, R. P., Khosropour, H., Huang, Y., & Laiwattanapaisal, W. (2022). Progress, challenges, and opportunities of two-dimensional layered materials based electrochemical sensors and biosensors. Materials Today Chemistry, 26, 101235.
Karimi, L., Yazdanshenas, M. E., Khajavi, R., Rashidi, A., & Mirjalili, M. (2015). Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric. Applied Surface Science, 332, 665-673.
Khan, M. E., Han, T. H., Khan, M. M., Karim, M. R., & Cho, M. H. (2018). Environmentally Sustainable Fabrication of Ag@g-C3N4 Nanostructures and Their Multifunctional Efficacy as Antibacterial Agents and Photocatalysts. ACS Applied Nano Materials, 1(6), 2912-2922.
Khan, Z. U. H., Gul, N. S., Sabahat, S., Sun, J., Tahir, K., Shah, N. S., Muhammad, N., Rahim, A., Imran, M., Iqbal, J., Khan, T. M., Khasim, S., Farooq, U., & Wu, J. (2023). Removal of organic pollutants through hydroxyl radical-based advanced oxidation processes. Ecotoxicology and Environmental Safety, 267, 115564.
Kim, S. B., & Hong, S. C. (2002). Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Applied Catalysis B: Environmental, 35(4), 305-315.
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2025). PubChem 2025 update. Nucleic Acids Res., 53(D1), D1516–D1525.
Koltsakidou, Α., Antonopoulou, M., Εvgenidou, Ε., Konstantinou, I., Giannakas, A. E., Papadaki, M., Bikiaris, D., & Lambropoulou, D. A. (2017). Photocatalytical removal of fluorouracil using TiO2-P25 and N/S doped TiO2 catalysts: A kinetic and mechanistic study. Science of The Total Environment, 578, 257-267.
Kong, L., Li, X., Song, P., & Ma, F. (2021). Porous graphitic carbon nitride nanosheets for photocatalytic degradation of formaldehyde gas. Chemical Physics Letters, 762, 138132.
Kusmierek, E. (2020). A CeO2 Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review. Catalysts, 10(12).
Lee, B. H., Iyer, S., Kurtén, T., Varelas, J. G., Luo, J., Thomson, R. J., & Thornton, J. A. (2023). Ring-opening yields and auto-oxidation rates of the resulting peroxy radicals from OH-oxidation of α-pinene and β-pinene††Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2ea00133k. Environmental Science: Atmospheres, 3(2), 399-407.
Lee, Y.-J., Jeong, Y. J., Cho, I. S., Park, S.-J., Lee, C.-G., & Alvarez, P. J. J. (2023). Facile synthesis of N vacancy g-C3N4 using Mg-induced defect on the amine groups for enhanced photocatalytic •OH generation. Journal of Hazardous Materials, 449, 131046.
Lei, Z., Xue, F., Wang, B., Wang, S., Zhang, Y., Xia, Y., Jin, W., & Liu, C. (2023). A stable and recyclable Z-scheme g-C3N4/rGO/BiVO4 heterojunction photocatalyst for site-selective C-3 formylation of indoles with methanol as a formyl source under visible light [10.1039/D2GC03858G]. Green Chemistry, 25(1), 348-356.
Li, X., Chen, Y., Tao, Y., Shen, L., Xu, Z., Bian, Z., & Li, H. (2022). Challenges of photocatalysis and their coping strategies. Chem Catalysis, 2(6), 1315-1345.
Li, X., Garlisi, C., Guan, Q., Anwer, S., Al-Ali, K., Palmisano, G., & Zheng, L. (2021). A review of material aspects in developing direct Z-scheme photocatalysts. Materials Today, 47, 75-107.
Li, X., Wang, L., Xia, Q., Liu, Z., & Li, Z. (2011). Catalytic oxidation of toluene over copper and manganese based catalysts: Effect of water vapor. Catalysis Communications - CATAL COMMUN, 14, 15-19.
Liu, J., Zhang, S., Wang, W., & Zhang, H. (2023). Photoelectrocatalytic principles for meaningfully studying photocatalyst properties and photocatalysis processes: From fundamental theory to environmental applications. Journal of Energy Chemistry, 86, 84-117.
Long, B., Lin, J., & Wang, X. (2014). Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J. Mater. Chem. A, 2.
Luo, Y., Wang, J., Yu, S., Cao, Y., Ma, K., Pu, Y., Zou, W., Tang, C., Gao, F., & Dong, L. (2018). Nonmetal element doped g-C3N4 with enhanced H2 evolution under visible light irradiation. Journal of Materials Research, 33(9), 1268-1278.
Ma, H.-Y., Zhao, L., Guo, L.-H., Zhang, H., Chen, F.-J., & Yu, W.-C. (2019). Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV. Journal of Hazardous Materials, 369, 719-726.
Ma, X., Bai, X., Chen, X., Zhang, C., Leng, J., Zhang, A., Chen, D., & Wang, J. (2024). Biotemplated heterostructure materials: opportunities for the elaboration of new photocatalysts and selective-oxidation catalysts [10.1039/D3CY01290E]. Catalysis Science & Technology, 14(1), 10-25.
Mallick, P., Sahoo, S. K., & Satpathy, S. K. (2024). Different strategies to improve photocatalytic activity of graphitic carbon nitride (g-C3N4) semiconductor nanomaterials for hydrogen generation. Journal of Molecular Liquids, 406, 125071.
Mamaghani, A. H., Haghighat, F., & Lee, C.-S. (2017). Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Applied Catalysis B: Environmental, 203, 247-269.
Mao, G. D., Thomas, P. D., & Poznansky, M. J. (1994). Oxidation of spin trap 5,5-dimethyl-1-pyrroline-1-oxide in an electron paramagnetic resonance study of the reaction of methemoglobin with hydrogen peroxide. Free Radical Biology and Medicine, 16(4), 493-500.
Mars, P., & van Krevelen, D. W. (1954). Oxidations carried out by means of vanadium oxide catalysts. Chemical Engineering Science, 3, 41-59. https://doi.org/https://doi.org/10.1016/S0009-2509(54)80005-4
McMillan, P. F., Lees, V., Quirico, E., Montagnac, G., Sella, A., Reynard, B., Simon, P., Bailey, E., Deifallah, M., & Corà, F. (2009). Graphitic carbon nitride C6N9H3·HCl: Characterisation by UV and near-IR FT Raman spectroscopy. Journal of Solid State Chemistry, 182(10), 2670-2677.
Miao, H., Zhang, W., Wang, T., Yang, Z., & Kong, C. (2023). g-C3N4-based nanocomposites for the photocatalytic degradation of VOCs: A review. Progress in Natural Science: Materials International, 33.
Minh Tri, N. L., Kim, J., Giang, B. L., Al Tahtamouni, T. M., Huong, P. T., Lee, C., Viet, N. M., & Quang Trung, D. (2019). Ag-doped graphitic carbon nitride photocatalyst with remarkably enhanced photocatalytic activity towards antibiotic in hospital wastewater under solar light. Journal of Industrial and Engineering Chemistry, 80, 597-605.
Mo, Z., Lu, S., & Shao, M. (2021). Volatile organic compound (VOC) emissions and health risk assessment in paint and coatings industry in the Yangtze River Delta, China. Environmental Pollution, 269, 115740.
Mo, Z., Lu, S., & Shao, M. (2021). Volatile organic compound (VOC) emissions and health risk assessment in paint and coatings industry in the Yangtze River Delta, China. Environmental Pollution, 269, 115740.
Moghaddas, M. (2019). Removal Of Volatile organic compounds (VOCs) by photocatalytic oxidation –A review. International Journal of Pharmaceutical Research, 11, 518-529.
Mohsin, M., Bhatti, I. A., Zeshan, M., Yousaf, M., & Iqbal, M. (2023). Prospects, challenges, and opportunities of the metals-modified TiO2 based photocatalysts for hydrogen generation under solar light irradiation: A review. FlatChem, 42, 100547.
Mukhtar, S., Szabó-Bárdos, E., Őze, C., Juzsakova, T., Rácz, K., Németh, M., & Horváth, O. (2025). g-C3N4 Modified with Metal Sulfides for Visible-Light-Driven Photocatalytic Degradation of Organic Pollutants. Molecules, 30(2).
Nagar, O. P., & Chouhan, N. (2024). Non-metal doped graphitic carbon nitride (g-C3N4): Prospects and review on hydrogen generation via water splitting. International Journal of Hydrogen Energy, 96, 533-565.
Narindri Rara Winayu, B., Liu, Y.-Q., & Chu, H. (2024). Competent visible light driven photocatalytic removal of gaseous styrene over TiO2/g-C3N4: Characterization, parameters, kinetics, mechanism. Journal of the Taiwan Institute of Chemical Engineers, 164, 105677.
Ong, W.-J., Tan, L.-L., Chai, S.-P., & Yong, S.-T. (2014). Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans., 44.
Palharim, P. H., Wang, X., Varesio, E., Bürgi, T., & Teixeira, A. C. S. C. (2024). In Situ ATR-IR Spectroscopy for the Degradation of Acetaminophen on WO3–AgCl Photocatalysts. The Journal of Physical Chemistry C, 128(47), 20042-20052.
Panaro, D. B., Mattei, M. R., Esposito, G., Steyer, J. P., Capone, F., & Frunzo, L. (2022). A modelling and simulation study of anaerobic digestion in plug-flow reactors. Communications in Nonlinear Science and Numerical Simulation, 105, 106062.
Panaro, D. B., Mattei, M. R., Esposito, G., Steyer, J. P., Capone, F., & Frunzo, L. (2022). A modelling and simulation study of anaerobic digestion in plug-flow reactors. Communications in Nonlinear Science and Numerical Simulations, 105, 106062.
Pattanayak, D., Pal, D. D., Mishra, J., & Thakur, C. (2022). Noble metal–free doped graphitic carbon nitride (g-C3N4) for efficient photodegradation of antibiotics: progress, limitations, and future directions. Environmental Science and Pollution Research, 30.
Pedanekar, R. S., Mohite, S. V., Narewadikar, N. A., Madake, S. B., Kim, Y., Kim, S. J., Jokare, S. M., & Rajpure, K. Y. (2025). Photoelectrocatalytic degradation of organic contaminants by spray coated Z-scheme TiO2/Bi2WO6 heterostructure electrode under solar light. Materials Research Bulletin, 182, 113127.
Pu, S., Hou, Y., Chen, H., Deng, D., Yang, Z., Xue, S., Zhu, R., Diao, Z., & Chu, W. (2018). An Efficient Photocatalyst for Fast Reduction of Cr(VI) by Ultra-Trace Silver Enhanced Titania in Aqueous Solution. Catalysts, 8(6).
Rashid, R., Shafiq, I., Gilani, M. R. H. S., Maaz, M., Akhter, P., Hussain, M., Jeong, K.-E., Kwon, E. E., Bae, S., & Park, Y.-K. (2024). Advancements in TiO2-based photocatalysis for environmental remediation: Strategies for enhancing visible-light-driven activity. Chemosphere, 349, 140703.
S Kislik, V. (2010). Chapter 2 - Carrier-Facilitated Coupled Transport Through Liquid Membranes: General Theoretical Considerations and Influencing Parameters. In V. S. Kislik (Ed.), Liquid Membranes (pp. 17-71). Elsevier.
Sakuna, P., Ketwong, P., Ohtani, B., Trakulmututa, J., Kobkeatthawin, T., Luengnaruemitchai, A., & Smith, S. (2022). The Influence of Metal-Doped Graphitic Carbon Nitride on Photocatalytic Conversion of Acetic Acid to Carbon Dioxide. Frontiers in Chemistry, 10, 1.
Saleh, R., & Taufik, A. (2019). Ultraviolet-light-assisted heterogeneous Fenton reaction of Ag-Fe3O4/graphene composites for the degradation of organic dyes. Journal of Environmental Chemical Engineering, 7(1), 102895.
Samriti, Tyagi, R., Ruzimuradov, O., & Prakash, J. (2023). Fabrication methods and mechanisms for designing highly-efficient photocatalysts for energy and environmental applications. Materials Chemistry and Physics, 307, 128108.
Saraga, D. Ε., Querol, X., Duarte, R. M. B. O., Aquilina, N. J., Canha, N., Alvarez, E. G., Jovasevic-Stojanovic, M., Bekö, G., Byčenkienė, S., Kovacevic, R., Plauškaitė, K., & Carslaw, N. (2023). Source apportionment for indoor air pollution: Current challenges and future directions. Science of The Total Environment, 900, 165744.
Saraga, D. Ε., Querol, X., Duarte, R. M. B. O., Aquilina, N. J., Canha, N., Alvarez, E. G., Jovasevic-Stojanovic, M., Bekö, G., Byčenkienė, S., Kovacevic, R., Plauškaitė, K., & Carslaw, N. (2023). Source apportionment for indoor air pollution: Current challenges and future directions. Science of The Total Environment, 900, 165744.
Shayegan, Z., Bahri, M., & Haghighat, F. (2022). A review on an emerging solution to improve indoor air quality: Application of passive removal materials. Building and Environment, 219, 109228.
Sheng, L., Wan, K., Huang, L., Yan, J., Huang, Q., Liu, Y., Guo, Y., & Zhang, H. (2024). Adsorption effect for removing fluoride with species of nitrogen by using La-BDC-NH2/C3N4: Experiments and mechanism. Journal of Environmental Chemical Engineering, 12(6), 114439.
Steen, C. J., Niklas, J., Poluektov, O. G., Schaller, R. D., Fleming, G. R., & Utschig, L. M. (2024). EPR Spin-Trapping for Monitoring Temporal Dynamics of Singlet Oxygen during Photoprotection in Photosynthesis. Biochemistry, 63(9), 1214-1224.
Tabassum, S., Sahadat Hossain, M., Islam, D., & Ahmed, S. (2025). Synthesis of nano-crystallite β-Bi2O3 as a photocatalyst through solid-state method for a sturdy treatment of pharmaceutical waste. Results in Surfaces and Interfaces, 18, 100371.
Takasugi, S., Tomita, K., Iwaoka, M., Kato, H., & Kakihana, M. (2015). The hydrothermal and solvothermal synthesis of LiTaO3 photocatalyst: Suppressing the deterioration of the water splitting activity without using a cocatalyst. International Journal of Hydrogen Energy, 40(16), 5638-5643.
Tasbihi, M., Kočí, K., Edelmannová, M., Troppová, I., Reli, M., & Schomäcker, R. (2018). Pt/TiO2 photocatalysts deposited on commercial support for photocatalytic reduction of CO2. Journal of Photochemistry and Photobiology A: Chemistry, 366, 72-80.
Tay, Q., Kanhere, P., Ng, C., Chen, S., Chakraborty, S., Huan, C., Sum, T. C., Ahuja, R., & Chen, Z. (2015). Defect Engineered g-C3N4 for Efficient Visible Light Photocatalytic Hydrogen Production. Chemistry of Materials, 27, 4930–4933.
Towler, G., & Sinnott, R. (2022). Chapter 13 - Equipment selection, specification, and design. In G. Towler & R. Sinnott (Eds.), Chemical Engineering Design (Third Edition) (pp. 437-440). Butterworth-Heinemann.
Tung, R. T. (2014). The physics and chemistry of the Schottky barrier height. Applied Physics Reviews, 1(1), 011304.
Turchi, C. S., & Ollis, D. F. (1990). Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. Journal of Catalysis, 122(1), 178-192.
Tzvetkov, G., Tsvetkov, M., & Spassov, T. (2018). Ammonia-evaporation-induced construction of three-dimensional NiO/g-C3N4 composite with enhanced adsorption and visible light-driven photocatalytic performance. Superlattices and Microstructures, 119, 122-133.
Vannice, M. A. (2007). An analysis of the Mars–van Krevelen rate expression. Catalysis Today, 123(1), 18-22.
Victória, H. F. V., Ferreira, D. C., Filho, J. B. G., Martins, D. C. S., Pinheiro, M. V. B., Sáfar, G. d. A. M., & Krambrock, K. (2022). Detection of singlet oxygen by EPR: The instability of the nitroxyl radicals. Free Radical Biology and Medicine, 180, 143-152.
Vu, H. T., Pham, G. T. T., Doan, T. L. H., Lam, T. D., Van, N. T., Van Manh, N., Quyen, P. T., Hai, N. D., Doan, H. V., & Nguyen, M. B. (2024). Influence of metal ions (Me: Fe, Cu, Co, Ni, Mn, Cr) on direct Z-scheme photocatalysts CN/Me-BTC on the degradation efficiency of tetracycline in water environment. Journal of the Taiwan Institute of Chemical Engineers, 161, 105518.
Wang, F., Li, W., Zhang, W., Ye, R., & Tan, X. (2022). Facile fabrication of the Ag nanoparticles decorated graphitic carbon nitride photocatalyst film for indoor air purification under visible light. Building and Environment, 222, 109402.
Wang, H., Zhang, X., Xie, J., Zhang, J., Ma, P., Pan, B., & Xie, Y. (2015). Structural distortion in graphitic-C3N4 realizing efficient photoreactivity. Nanoscale, 7.
Wang, J., & Wang, S. (2022). A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coordination Chemistry Reviews, 453, 214338.
Wang, T., Wan, T., He, S., Wang, J., Yu, M., Jia, Y., & Tang, Q. (2023). Facile fabrication of graphitic carbon nitride by solvothermal method with hierarchical structure and high visible light photocatalytic activity. Journal of the Taiwan Institute of Chemical Engineers, 145, 104773.
Wang, T., Zhou, J., Li, D., & Ao, Z. (2024). Enhanced visible light photocatalytic degradation of styrene by g-C3N4 quantum dots/P25 nanocomposites. Environmental Surfaces and Interfaces, 2, 19-25.
Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., & Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76-80.
Wang, Y., Wang, X., & Antonietti, M. (2012). Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie International Edition, 51(1), 68-89.
Warhurst, M., & Fewson, C. (1995). Microbial metabolism and biotransformations of styrene. The Journal of applied bacteriology, 77, 597-606.
Werder, E. J., Engel, L. S., Richardson, D. B., Emch, M. E., Gerr, F. E., Kwok, R. K., & Sandler, D. P. (2018). Environmental styrene exposure and neurologic symptoms in U.S. Gulf coast residents. Environment International, 121, 480-490.
Whitten, J. E. (2023). Ultraviolet photoelectron spectroscopy: Practical aspects and best practices. Applied Surface Science Advances, 13, 100384.
Williams, A. F., & Dixon, H. B. (1997). The effect of temperature on the viscosity of air. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 113(763), 233-237.
Wu, D., Yue, S., Wang, W., An, T., Li, G., Yip, H. Y., Zhao, H., & Wong, P. K. (2016). Boron doped BiOBr nanosheets with enhanced photocatalytic inactivation of Escherichia coli. Applied Catalysis B: Environmental, 192, 35-45.
Wu, S., Hu, H., Lin, Y., Zhang, J., & Hu, Y. H. (2020). Visible light photocatalytic degradation of tetracycline over TiO2. Chemical Engineering Journal, 382, 122842.
Yadav, G. D., & Singh, S. (2014). Ring opening of epoxides with alcohols using Fe(Cp)2BF4 as catalyst. Tetrahedron Letters, 55(29), 3979-3983.
Yan, W., Yan, L., & Jing, C. (2018). Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms. Applied Catalysis B: Environmental, 244.
Yang, C., & Sun, B. (2021). Chapter 3 - Kinetic modeling of the competitive-consecutive reaction system. In C. Yang & B. Sun (Eds.), Modeling, Optimization, and Control of Zinc Hydrometallurgical Purification Process (pp. 39-62). Academic Press.
Yi, M., Shang, J., Liu, Y., & Cheng, X. (2025). In-situ self-assembly of Z-scheme TiO2/g-C3N4 heterojunction enhanced visible-light photocatalytic performance for degrading phenolic pollutants. Separation and Purification Technology, 360, 130977.
Youssef, A. A. A., Salas, A. H., Al-Harbi, N., Basfer, N. M., & Nassr, D. I. (2023). Determination of chemical kinetic parameters in Arrhenius equation of constant heating rate: Theoretical method. Alexandria Engineering Journal, 67, 461-472.
Yue, L., Yihan, W., Hongwei, P., Xiangxue, W., Shujun, Y., & Xiangke, W. (2019). Study on the Removal of Water Pollutants by Graphite Phase Carbon Nitride Materials. Progress in Chemistry, 31(6), 831-846.
Yurdakal, S., Garlisi, C., Özcan, L., Bellardita, M., & Palmisano, G. (2019). Chapter 4 - (Photo)catalyst Characterization Techniques: Adsorption Isotherms and BET, SEM, FTIR, UV–Vis, Photoluminescence, and Electrochemical Characterizations. In G. Marcì & L. Palmisano (Eds.), Heterogeneous Photocatalysis (pp. 87-152). Elsevier.
Zaytsev, A., Koss, A. R., Breitenlechner, M., Krechmer, J. E., Nihill, K. J., Lim, C. Y., Rowe, J. C., Cox, J. L., Moss, J., Roscioli, J. R., Canagaratna, M. R., Worsnop, D. R., Kroll, J. H., & Keutsch, F. N. (2019). Mechanistic study of the formation of ring-retaining and ring-opening products from the oxidation of aromatic compounds under urban atmospheric conditions. Atmos. Chem. Phys., 19(23), 15117-15129.
Zhang, L., Moralejo, C., & Anderson, W. A. (2020). A review of the influence of humidity on photocatalytic decomposition of gaseous pollutants on TiO2-based catalysts. The Canadian Journal of Chemical Engineering, 98(1), 263-273.
Zhao, X., Liu, Q., Li, X., Ji, H., & Shen, Z. (2023). Two-dimensional g-C3N4 nanosheets-based photo-catalysts for typical sustainable processes. Chinese Chemical Letters, 34(11), 108306.
Zheng, S., Huang, M., Sun, S., Zhao, H., Meng, L., Mu, T., Song, J., & Jiang, N. (2021). Synergistic effect of MIL-88A/g-C3N4 and MoS2 to construct a self-cleaning multifunctional electrospun membrane. Chemical Engineering Journal, 421, 129621.
Zhong, L., Haghighat, F., Lee, C.-S., & Lakdawala, N. (2013). Performance of ultraviolet photocatalytic oxidation for indoor air applications: Systematic experimental evaluation. Journal of Hazardous Materials, 261, 130-138.
Zhong, Y., Wang, Y., Ji, Y., Zhang, X., & Wang, X. (2023). Biomass carbon-based composites for adsorption/photocatalysis degradation of VOCs: A comprehensive review. Colloid and Interface Science Communications, 57, 100749.
Zhou, X., Xie, J., Zhang, R., Ma, M., Li, X., & Gong, P. (2024). Recent advances in different catalysts for synergistic removal of NOx and VOCs: A minor review. Journal of Environmental Chemical Engineering, 12(1), 111764.
Zhou, Y., Zhang, L., Huang, W., Kong, Q., Fan, X., Wang, M., & Shi, J. (2016). N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon, 99, 111-117.
Zhou, Y., Zhang, L., Huang, W., Kong, Q., Fan, X., Wang, M., & Shi, J. (2016). N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon, 99, 111-117.
Zhu, D., & Zhou, Q. (2020). Novel Bi2WO6 modified by N-doped graphitic carbon nitride photocatalyst for efficient photocatalytic degradation of phenol under visible light. Applied Catalysis B: Environmental, 268, 118426.
Zhu, M., Zhang, L., Cheng, B., Zhang, M., & Lin, Q. (2024). Synthesis process optimization of 4,4′-azobis (1,2,4-triazole) in a continuous stirred tank reactor (CSTR). FirePhysChem, 4(1), 48-54.
Zilli-Tomita, H. E., Saucedo-Lucero, J. O., Suárez-Toriello, V. A., Rangel-Mendez, J. R., Avalos-Borja, M., & Arcibar-Orozco, J. A. (2024). Carbon-supported g-C3N4 photocatalyst for the treatment of vapor isobutanol as odorous VOC. Sustainable Chemistry for the Environment, 6, 100084.