簡易檢索 / 詳目顯示

研究生: 林寰鐸
Lin, Fandel
論文名稱: 基於異質性城市資料推估數據之多準則競合路線規劃框架:以交通運輸為例
An Inference-then-Planning Framework for Multi-Criteria Competitive and Cooperative Route Planning Built on Heterogeneous Urban Data: A Case Study on Transportation
指導教授: 解巽評
Hsieh, Hsun-Ping
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 205
中文關鍵詞: 約束路線規劃資訊預測多準則最佳化特徵工程非單調性城市計算交通運輸
外文關鍵詞: Constrained route planning, Informatics forecasting, Multi-criteria optimization, Feature engineering, Non-monotonicity, Urban computing, Transportation
相關次數: 點閱:159下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口成長與都市建設發展,約束規劃與資訊預測在城市中可謂無所不在;其中作為影響生活品質的一大重要因素,衛星都市間抑或是市中心交通運輸的重要性不言而喻。然而現今雖已有大量針對城市交通運輸的資訊預測抑或是路線規劃等研究,卻少有研究著重於「基於推估數據的路線規劃」框架中的協同關係。在此類型框架中,首先會基於異質性城市資料進行初步數據推估;並將推估所得的結果作為輸入資訊抑或是成本函數以進行路線規畫。雖然定義陳述貌似單純,但當面臨城市空間中的多準則最佳化時,具備此框架性質的問題將會成為非決定性多項式完整問題。換言之,由於約束的複雜性、以及由異質性城市特徵與源自但不僅限於類神經網路等數據推估模型所得之啟發式函數致使最佳化目標產生的不確定性,該原始問題可以被視為非單調多準則最佳化問題的變形。因此,本篇論文著重於「基於異質性城市資料推估數據之多準則競合路線規劃」框架中四個不同但彼此間高度相關的研究問題,包含根據異質性城市資料與基於路線特徵提取所進行的人潮推估、基於非單調資料與最佳化目標的集中競合線性路線規劃、基於非單調資料與最佳化目標的集中競合環狀路線規劃、以及基於有限可及資料的分散競爭式固定資源搜尋路線規劃。與此同時,上述四種研究問題可分別對應至真實世界中不同的城市交通運輸應用,依序為基於路線特徵提取的載客量預測、基於現有大眾運輸系統的額外線性路線規劃、基於現有大眾運輸系統的額外環狀路線規劃、以及分散式的停車格搜尋。對此,本篇論文提出了包含基於路線影響區(Route-Affecting Region)的特徵提取與特徵工程方法、與基於路線影響區的載客量推估模型配合以進行非單調線性路線規劃的偏向延展演算法(BiasSpan)、與基於路線影響區的載客量推估模型及針對銷售員旅行問題的成熟演算法配合以進行非單調環狀路線規劃的顫抖手多重啟發演算法(Trembling Hand)、以及結合時空間需求預測以進行停車格巡航路線規劃的操舵轉移演算法(Conntrans)。相關實驗的資料取自於臺南、芝加哥、及舊金山等城市的真實資料,其中城市具備各自相異且獨特的城市特徵;而多面向實驗結果則展示了上述方法(路線影響區、偏向延展演算法、顫抖手多重啟發演算法、操舵轉移演算法)的有效性及適應性。總結而言,本篇論文展示了交通運輸中基於異質性城市資料推估數據之多準則競合路線規劃所具備的效力及多樣性。

    Constrained planning and informatics forecasting is ubiquitous in urban space with the rapid growth of population and urban infrastructure. Meanwhile, acting as one of the key factors that affect the quality of life, transportation between satellite cities or inside the city center turns out to be a crucial issue. Accordingly, a plethora of frameworks and algorithms have been proposed in solving either inference or route planning problem. However, few literatures focus on the synergistic relationship in the inference-then-planning architecture where inference problem is first solved with input features retrieved from urban space and the route planning section is conducted on the basis of information or cost functions derived from the inference model. In spite of its deceptively simple statement, the inference-then-planning problem ends up being an NP-Complete problem when optimizing multiple criteria in urban space. In other words, the original inference-then-planning problem could be viewed as a variation of non-monotonic multi-criteria (multi-objective) optimization problem due to the complexity in constraints and the uncertainty in objectives, which are originated from the heterogeneous urban features and heuristics developed from especially the neural-network-based inference module. Thereafter, this thesis focuses on four various yet closely dependent research problems belong to the inference-then-planning framework for multi-criteria competitive and cooperative route planning built on heterogeneous urban data, including the passenger flow inference with heterogeneous urban data and route-based feature extraction, the centralized cooperative linear route planning with non-monotonicity in data and objectives, the centralized cooperative circular route planning with non-monotonicity in data and objectives, and the distributed competitive searching for stationary resources with limited data accessibility. Furthermore, these targeted research issues are modeled into passenger flow inference with route-affecting region, linear route planning for existing mass transit, circular route planning for existing mass transit, and distributed competitive searching for parking slot in represent of their real-world applications respectively. Corresponding approaches along with algorithms including the Route-Affecting Region (RAR) for urban feature extraction and engineering, BiasSpan synergized with RAR-based passenger flow inference for non-monotonic linear route planning, Trembling Hand Metaheuristic (TH) synergized with RAR-based passenger flow inference and TSP solver for circular route planning, and Conntrans with spatio-temporal demand estimation for parking slot cruising. Comprehensive evaluations based on multiple real-world data with distinct urban characteristics in Tainan, Chicago, and San Francisco are conducted to examine the effectiveness and adaptability of the proposed methods. As a consequence, the efficacy along with the variety of synergizing inference results derived from heterogeneous urban data in the route planning process for transportation is demonstrated.

    摘要 i Abstract iii Acknowledgement v Table of Contents vii List of Tables ix List of Figures xi Chapter 1. Introduction 1 1.1 Contribution 6 1.2 Paper Structure 8 Chapter 2. Related Work 9 2.1 Transportation in Urban Space 9 2.2 Inference 9 2.2.1. Passenger Volume Estimation for New Mass Transit 9 2.2.2. Parking Slot Demand Estimation 11 2.3 Planning 12 2.3.1. Constrained Multi-Criteria Route Planning 12 2.3.2. Traveling Salesman Problem (TSP) 15 2.3.3. Searching and Planning for Stationary Resource 17 Chapter 3. Methodology 20 3.1 Passenger Flow Inference with Route-Affecting Region 20 3.1.1. Background 20 3.1.2. Preliminary 23 3.1.3. Problem Definition 24 3.1.4. Methodology 25 3.2 Linear Route Planning for Existing Mass Transit 32 3.2.1. Background 32 3.2.2. Preliminary 35 3.2.3. Problem Definition 37 3.2.4. Methodology 38 3.3 Circular Route Planning for Existing Mass Transit 48 3.3.1. Background 48 3.3.2. Preliminary 52 3.3.3. Problem Definition 54 3.3.4. Methodology 56 3.4 Distributed Competitive Searching for Parking Slot 63 3.4.1. Background 63 3.4.2. Problem Definition 67 3.4.3. Methodology 72 Chapter 4. Evaluation 85 4.1 Passenger Flow Inference with Route-Affecting Region 85 4.1.1. Dataset and Preprocessing 85 4.1.2. Evaluation Setting 89 4.1.3. Evaluation Result and Discussion 91 4.2 Linear Route Planning for Existing Mass Transit 98 4.2.1. Dataset and Preprocessing 99 4.2.2. Evaluation Setting 103 4.2.3. Comparative Method 104 4.2.4. Evaluation Result and Discussion 105 4.3 Circular Route Planning for Existing Mass Transit 123 4.3.1. Dataset and Preprocessing 123 4.3.2. Evaluation Setting 128 4.3.3. Comparative Method 129 4.3.4. Evaluation Result and Discussion 131 4.4 Distributed Competitive Searching for Parking Slot 148 4.4.1. Dataset and Preprocessing 148 4.4.2. Simulation and Evaluation Setting 151 4.4.3. Comparative Method 155 4.4.4. Evaluation Result and Discussion 157 Chapter 5. Conclusion 175 Reference 180 Appendix. Biography 200

    [1] Mohamed Abdallah, Mohamad Adghim, Munjed Maraqa, and Elkhalifa Aldahab. 2019. Simulation and optimization of dynamic waste collection routes. Waste Management & Research: The Journal for a Sustainable Circular Economy. doi: 10.1177/0734242X19833152.
    [2] Ittai Abraham, Daniel Delling, Andrew Goldberg, and Renato F. Werneck. 2011. A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. In International Symposium on Experimental Algorithms. Lecture Notes in Computer Science, Vol. 6630. Springer, 230–241.
    [3] Sivan Aldor, Lawrence Brown, Emily Fox, and Robert Stine. 2016. Spatio-temporal low count processes with application to violent crime events. Statistica Sinica 26: 1587-1610. doi: 10.5705/ss.2014.217t.
    [4] Rosi Alessia, Cavallini Elena, Gamboz Nadia, Vecchi Tomaso, Van Vugt Floris Tijmen, and Russo Riccardo. 2019. The Impact of Failures and Successes on Affect and Self-Esteem in Young and Older Adults. Frontiers in Psychology 1795. doi: 10.3389/fpsyg.2019.01795.
    [5] Mir Mohammad Alipour and Seyed Naser Razavi. 2019. A new local search heuristic based on nearest insertion into the convex hull for solving Euclidean TSP. International Journal of Operational Research 34(3). doi:10.1504/IJOR.2019.098314.
    [6] Eric Allender, Peter Burgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. 2009. On the Complexity of Numerical Analysis. SIAM Journal on Computing 38 (5): 1987-2006. doi:10.1137/070697926.
    [7] David Applegate, William Cook, and André Rohe. 2003. Chained Lin-Kernighan for large traveling salesman problems. INFORMS Journal on Computing 15: 82-92. doi: 10.1287/ijoc.15.1.82.15157.
    [8] Tahereh Arabghalizi and Alexandros Labrinidis. 2019. How full will my next bus be? A Framework to Predict Bus Crowding Levels. In International Workshop on Urban Computing. Anchorage, Alaska. ACM.
    [9] Sanjeev Arora. 1998. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45 (5): 753-782, doi:10.1145/290179.290180.
    [10] Albert Bandura. 1982. Self-efficacy mechanism in human agency. American Psychologist 37(2): 122–147. doi: 0.1037/0003-066X.37.2.122.
    [11] Albert Bandura. 1989. Human agency in social cognitive theory. Am Psychol 44(9):1175-1184. doi: 10.1037/0003-066x.44.9.1175.
    [12] Md Golam Rabiul Alam, Mohammad Mehedi Hassan, Md. Zia Uddin, Ahmad Almogren, and Giancarlo Fortino. 2019. Autonomic computation offloading in mobile edge for IoT applications. Future Generation Computer Systems 90: 149-157.
    [13] Dou An, Qingyu Yang, Donghe Li, Wei Yu, Wei Zhao, and Chao-Bo Yan. 2020. Where Am I Parking: Incentive Online Parking-Space Sharing Mechanism With Privacy Protection. IEEE Transactions on Automation Science and Engineering. doi: 10.1109/TASE.2020.3024835.
    [14] Daniel Ayala, Ouri Wolfson, Bhaskar Dasgupta, Jie Lin, and Bo Xu. 2018. Spatio-Temporal Matching for Urban Transportation Applications. ACM Transactions on Spatial Algorithms and Systems. doi: 10.1145/3183344.
    [15] Daniel Ayala, Ouri Wolfson, Bo Xu, Bhaskar Dasgupta, and Jie Lin. 2011. Parking slot assignment games. In ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL). doi: 10.1145/2093973.2094014.
    [16] Daniel Ayala, Ouri Wolfson, Bo Xu, Bhaskar DasGupta, and Jie Lin. 2012. Pricing of parking for congestion reduction. In ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL) 43–51. doi: 10.1145/2424321.2424328.
    [17] Daniel Ayala, Ouri Wolfson, Bo Xu, Bhaskar DasGupta, and Jie Lin. 2012. Parking in Competitive Settings: A Gravitational Approach. In IEEE International Conference on Mobile Data Management (MDM). doi: 10.1109/MDM.2012.44.
    [18] Claudio Badii, Paolo Nesi, and Irene Paoli. 2018. Predicting Available Parking Slots on Critical and Regular Services by Exploiting a Range of Open Data. IEEE Access. doi: 10.1109/ACCESS.2018.2864157.
    [19] Hannah Bast. 2009. Car or public transport – two worlds. Efficient Algorithms 5760: 355–367.
    [20] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin Raychev, and Fabien Viger. 2010. Fast Routing in Very Large Public Transportation Networks Using Transfer Patterns. In Annual European Symposium on Algorithms 290-301.
    [21] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato Werneck. 2016. Route Planning in Transportation Networks. Algorithm Engineering 9220. doi: 10.1007/978-3-319-49487-6_2.
    [22] Hannah Bast, Stefan Funke, Domagoj Matijević, Camil Demetrescu, Andrew Goldberg, and David Johnson. 2006. TRANSIT: Ultrafast Shortest-Path Queries with Linear-Time Preprocessing. In 9th DIMACS Implementation Challenge --- Shortest Path, DIMACS.
    [23] Mohamed Baza, Mohamed Mahmoud, Gautam Srivastava, Waleed Alasmary, and Mohamed Younis. 2020. A light blockchain-powered privacy-preserving organization scheme for ride sharing services. In IEEE Vehicular Technology Conference (VTC). doi: 10.1109/VTC2020-Spring48590.2020.9129197.
    [24] Tolga Bektas. 2006. The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3): 209-219.
    [25] Asma Belhadi, Youcef Djenouri, Gautam Srivastava, Djamel Djenouri, Alberto Cano, and Jerry Chun-Wei Lin. 2020. A Two-Phase Anomaly Detection Model for Secure Intelligent Transportation Ride-Hailing Trajectories. IEEE Transactions on Intelligent Transportation Systems (ITS). doi: 10.1109/TITS.2020.3022612.
    [26] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, Samy Bengio. 2017. Neural Combinatorial Optimization with Reinforcement Learning. In International Conference on Learning Representations Workshop (ICLR). arXiv:1611.09940.
    [27] Tobias Berg and Harald Hempel. 2009. Reoptimization of Traveling Salesperson Problems: Changing Single Edge-Weights. In International Conference on Language and Automata Theory and Applications (LATA) 141–151.
    [28] Louis-Philippe Bigras, Michel Gamache, and Gilles Savard. 2008. The time-dependent traveling salesman problem and single machine scheduling problems with sequence dependent setup times. Discrete Optimization 5(4): 685-699.
    [29] Philip Blythe, Yanjie Ji, Amy Guo, Wei Wang, and Dounan Tang. 2014. Short-term forecasting of available parking space using wavelet neural network model. IET Intelligent Transport Systems. doi: 10.1049/iet-its.2013.0184.
    [30] Fabian Bock and Sergio Di Martino. 2018. On-street parking data in San Francisco - SFpark sensor data and simulated crowd-sensing data. Harvard Dataverse. doi: 10.7910/DVN/YLWCSU.
    [31] Felix Borutta, Sebastian Schmoll, and Sabrina Friedl. 2019. Optimizing the Spatio-Temporal Resource Search Problem with Reinforcement Learning. In ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL) 628-631. doi: 10.1145/3347146.3363351.
    [32] Sándor T. Brassai, Barna Iantovics, and Călin Enăchescu. 2012. Artificial Intelligence in the path planning optimization of mobile agent navigation. Procedia Economics and Finance 3: 243-250.
    [33] Łukasz Brocki and Danijel Koržinek. 2007. Kohonen Self-Organizing Map for the Traveling Salesperson Problem. Recent Advances in Mechatronics 116-119.
    [34] Stanley Glenn E. Brucal and Elmer P. Dadios. 2017. Comparative analysis of solving traveling salesman problem using artificial intelligence algorithms. In IEEE International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). doi: 10.1109/HNICEM.2017.8269423.
    [35] M.E. Bruni, P. Beraldi, and S. Khodaparasti. 2020. A hybrid reactive GRASP heuristic for the risk-averse k-traveling repairman problem with profits. Computers & Operations Research 115. doi: 10.1016/j.cor.2019.104854.
    [36] Valentin Buchhold, Peter Sanders, and Dorothea Wagner. 2019. Real-time Traffic Assignment Using Engineered Customizable Contraction Hierarchies. Journal of Experimental Algorithmics 2.4. doi: 10.1145/3362693.
    [37] Kevin Buchin, Irina Kostitsyna, Bram Custers, and Martijn Struijs. 2019. A Sampling-based Strategy for Distributing Taxis in a Road Network for Occupancy Maximization. In ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL) 616-619. doi: 10.1145/3347146.3363348.
    [38] Valentina Cacchiani, Carlos Contreras-Bolton, and Paolo Toth. 2020. Models and algorithms for the Traveling Salesman Problem with Time-dependent Service times. European Journal of Operational Research 283(3): 825-843.
    [39] Héctor Cancela, Antonio Mauttone, and María Urquhart. 2015. Mathematical programming formulations for transit network design. Transportation Research Part B: Methodological 77: 17-37.
    [40] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) 785–794. doi: 10.1145/2939672.2939785.
    [41] Jingwei Chen, Robert C. Holte, Sandra Zilles, and Nathan R. Sturtevant. 2017. Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions. In International Joint Conference on Artificial Intelligence (IJCAI) 489-495.
    [42] Shaowu Cheng, Baoyi Liu, and Botao Zhai. 2010. Bus arrival time prediction model based on APC data. In the 6th Advanced Forum on Transportation of China. DOI: 10.1049/cp.2010.1123
    [43] Steven I-Jy Chien, Yuqing Ding, and Chienhung Wei. 2002. Dynamic Bus Arrival Time Prediction with Artificial Neural Networks. Journal of Transportation Engineering 128(5): 429-438.
    [44] Shuo-Yan Chou, Shih-Wei Lin, and Chien-Chang Li. 2008. Dynamic parking negotiation and guidance using an agent-based platform. Expert Systems with Applications 35(3): 805-817.
    [45] Concorde. url:http://www.math.uwaterloo.ca/tsp/concorde.html.
    [46] Thomas M. Cover and Joy A. Thomas. 1991. Entropy, relative entropy and mutual information. Elements of Information Theory, ch. 2, sec. 1, pp. 12-13.
    [47] Gloria Cerasela Crişan, Laszlo Barna Iantovics, and Elena Nechit. 2019. Computational Intelligence for Solving Difficult Transportation Problems. Procedia Computer Science 159: 172-181.
    [48] Bhaskar DasGupta, João P. Hespanha, James Riehl, and Eduardo Sontag. 2006. Honey-pot constrained searching with local sensory information. Nonlinear Analysis: Theory, Methods & Applications 65(9): 1773-1793.
    [49] Daniel Delling, Julian Dibbelt, and Thomas Pajor. 2019. Fast and Exact Public Transit Routing with Restricted Pareto Sets. In SIAM Symposium on Algorithm Engineering and Experiments (ALENEX) 54-65.
    [50] Daniel Delling, Thomas Pajor, and Renato F. Werneck. 2015. Round-Based Public Transit Routing. Transportation Science 49(3): 591–604.
    [51] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. 2009. Engineering route planning algorithms. Algorithmics of Large and Complex Networks 5515: 117-139.
    [52] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, Renato F. Werneck. 2011. Customizable route planning. In International Symposium on Experimental Algorithms (SEA), Vol. 6630. Springer, 376–387.
    [53] Mauro Dell’Orco and Dušan Teodorović. 2007. Multi Agent Systems Approach to Parking Facilities Management. Applied Research in Uncertainty Modeling and Analysis, pp. 321-339. doi: 10.1007/0-387-23550-7_15.
    [54] Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. 2015. User-Constrained Multi-Modal Route Planning. Journal of Experimental Algorithmics. 19(3):1.1-1.19.
    [55] Edsger W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische Mathematik 269-271.
    [56] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. 2006. Ant colony optimization. IEEE Computational Intelligence Magazine 1 (4): 28-39.
    [57] Alexandros Efentakis, Dieter Pfoser, and Agnès Voisard. 2011. Efficient data management in support of shortest-path computation. In ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL) 28-33. doi: 10.1145/2068984.2068990.
    [58] Matthias Ehrgott and Kathrin Klamroth. 1997. Connectedness of efficient solutions in multiple criteria combinatorial optimization. European Journal of Operational Research 97(1): 159-166.
    [59] David W. Etherington, Sarit Kraus, and Donald Perlis. 1991. Nonmonotonicity and the scope of reasoning. Artificial Intelligence 52(3): 221-261.
    [60] Jie-Yue Fang, Fandel Lin, and Hsun-Ping Hsieh. 2020. A Multi-criteria System for Recommending Taxi Routes with an Advance Reservation. In European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD) 308-322, Ghent, Belgium.
    [61] Thomas A. Feo and Mauricio G. C. Resende. 1995. Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization 6: 109-133.
    [62] Luca M. Gambardella and Marco Dorigo. 1995. Ant-Q: A Reinforcement Learning approach to the traveling salesman problem. In International Conference on Machine Learning (ICML) 252-260. doi: 10.1016/B978-1-55860-377-6.50039-6.
    [63] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. 1976. Some simplified NP-complete graph problems. Theoretical Computer Science 1(3): 237-267.
    [64] Michael R. Garey, David S. Johnson, and Robert E. Tarjan. 1976. The Planar Hamiltonian Circuit Problem is NP-Complete. SIAM Journal on Computing 5(4), 704–714.
    [65] Michael R. Garey and David S. Johnson. 1979. Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman and Company.
    [66] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. 2001. Distance labeling in graphs. In ACM-SIAM Symposium on Discrete Algorithms (SODA) 210-219. doi: 10.5555/365411.365447.
    [67] Andrew V. Goldberg and Chris Harrelson. 2005. Computing the shortest path: A* search meets graph theory. In Annual ACM–SIAM Symposium on Discrete Algorithms (SODA) 156–165.
    [68] Andrew V. Goldberg. 2008. A Practical Shortest Path Algorithm with Linear Expected Time. SIAM Journal on Computing 37(5): 1637–1655.
    [69] Yongshun Gong, Li Zhibin, Zhang Jian, Liu Wei, and Yi Jinfeng. 2020. Potential Passenger Flow Prediction: A Novel Study for Urban Transportation Development. In AAAI Conference on Artificial Intelligence (AAAI) 4020-4027.
    [70] Valérie Guihaire and Jin-Kao Hao. 2010. Transit network timetabling and vehicle assignment for regulating authorities. Computers & Industrial Engineering 59(1): 16-23.
    [71] Liya Guo, Shan Huang, Jun Zhuang, and Adel W. Sadek. 2013. Modeling Parking Behavior Under Uncertainty: A Static Game Theoretic versus a Sequential Neo-additive Capacity Modeling Approach. Networks and Spatial Economics 13: 327-350.
    [72] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics (4)2: 100-107.
    [73] Refael Hassin and Asaf Levin. 2004. An efficient polynomial time approximation scheme for the constrained minimum spanning tree problem using matroid intersection. SIAM Journal on Computing 33(2): 261–268.
    [74] Riley Heather and Sridharan Mohan. 2019. Integrating Non-monotonic Logical Reasoning and Inductive Learning with Deep Learning for Explainable Visual Question Answering. Frontiers in Robotics and AI 6. doi: 10.3389/frobt.2019.00125.
    [75] Michael Held and Richard M. Karp. 1970. The Traveling-Salesman Problem and Minimum Spanning Trees. Operations Research 18 (6): 1138-1162.
    [76] Keld Helsgaun. 2000. An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic. European Journal of Operational Research 126(1): 106-130.
    [77] Keld Helsgaun. 2009. General k-opt submoves for the Lin–Kernighan TSP heuristic. Mathematical Programming Computation 1: 119–163.
    [78] Keld Helsgaun. 2018. Using POPMUSIC for Candidate Set Generation in the Lin-Kernighan-Helsgaun TSP Solver. Technical Report, Computer Science, Roskilde University.
    [79] Sebastian T. Henn. 2007. Weight-constrained minimum spanning tree problem. Doctoral dissertation, Department of Mathematics, University of Kaiserslautern, Germany.
    [80] Robert C. Holte, Ariel Felner, Guni Sharon, and Nathan R. Sturtevant. 2016. Bidirectional Search That Is Guaranteed to Meet in the Middle. In AAAI Conference on Artificial Intelligence (AAAI) 3411-3417.
    [81] Hsun-Ping Hsieh and Fandel Lin. 2021. AI Governance: Advanced Urban Computing on Informatics Forecasting and Route Planning. In International Conference on Database System for Advanced Applications (DASFAA), Tutorial Paper. Taipei, Taiwan.
    [82] Thi Thi Htun. 2018. A Survey Review on Solving Algorithms for Travelling Salesman Problem (TSP). International Journal of Scientific and Research Publications. doi:10.29322/IJSRP.8.12.2018.p8481.
    [83] Xinxin Huang, Yingguo Gao, and Xiaohui Duan. 2020. An Autonomous Parking Space Planning System Based on Pattern Searching Algorithm. In IEEE International Conference on Smart City and Informatization (iSCI). doi: 10.1109/iSCI50694.2020.00009.
    [84] Zhao Huang, Qingquan Li, Fan Li, and Jizhe Xia. 2019. A Novel Bus-Dispatching Model Based on Passenger Flow and Arrival Time Prediction. IEEE Access 7: 106453-106465. DOI: 10.1109/ACCESS.2019.2932801.
    [85] Cheng Jin, Lei Wang, Lei Shu, Yuyao Feng, and Xueqing Xu. 2012. A fairness-aware smart parking scheme aided by parking lots. In IEEE International Conference on Communications (ICC). doi: 10.1109/ICC.2012.6364635.
    [86] Gregor Jossé, Matthias Schubert, and Hans-Peter Kriegel. 2013. Probabilistic parking queries using aging functions. In ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL) 452-455. doi: 10.1145/2525314.2525458.
    [87] Ece Kamar. 2016. Directions in hybrid intelligence: complementing AI systems with human intelligence. In International Joint Conference on Artificial Intelligence (IJCAI) 4070–4073. doi: 10.5555/3061053.3061219.
    [88] Merkourios Karaliopoulos, Konstantinos Katsikopoulos, and Lambros Lambrinos. 2014. Bounded rationality can increase parking search efficiency. In ACM International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing (MobiHoc) 195-204. doi: 10.1145/2632951.2632955.
    [89] Richard M. Karp. 1978. A Patching Algorithm for the Nonsymmetric Traveling-Salesman Problem. SIAM Journal on Computing 8(4), 561–573. doi: 10.1137/0208045.
    [90] Naiping Keng and David Y. Y. Yun. 1989. A planning/scheduling methodology for the constrained resource problem. In International Joint Conference on Artificial Intelligence (IJCAI) (2): 998-1003.
    [91] Joon-Seok Kim, Dieter Pfoser, and Andreas Züfle. 2019. Distance-Aware Competitive Spatiotemporal Searching Using Spatiotemporal Resource Matrix Factorization. In ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL) 624-627. doi: 10.1145/3347146.3363350.
    [92] Oanh Tran Thi Kim, Nguyen H. Tran, Chuan Pham, Tuan LeAnh, My T. Thai, and Choong Seon Hong. 2020. Parking Assignment: Minimizing Parking Expenses and Balancing Parking Demand Among Multiple Parking Lots. IEEE Transactions on Automation Science and Engineering. doi: 10.1109/TASE.2019.2948200.
    [93] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. 1983. Optimization by Simulated Annealing. Science 220 (4598): 671-680.
    [94] Gozde Kizilates and Fidan Nuriyeva. 2013. On the Nearest Neighbor Algorithms for the Traveling Salesman Problem. Advances in Intelligent Systems and Computing 225. 111-118. doi: 10.1007/978-3-319-00951-3_11.
    [95] Yuichi Kobayashi, Noboru Kiyama, Hirokazu Aoshima, and Masamori Kashiyama. 2011. A route search method for electric vehicles in consideration of range and locations of charging stations. In IEEE Intelligent Vehicles Symposium (IV). doi: 10.1109/IVS.2011.5940556.
    [96] Richard E. Korf. 1985. Depth-first iterative-deepening: an optimal admissible tree search. Artificial Intelligence (27)1: 97–109.
    [97] Richard E. Korf. 1999. Divide-and-Conquer Bidirectional Search: First Results. In International joint conference on Artificial intelligence. (IJCAI’99) (vol. 2) 1184-1189.
    [98] Richard E. Korf and Peter Schultze. 2005. Large-Scale Parallel Breadth-First Search. In National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference. 3. 1380-1385.
    [99] Amir O. Kotb, Yao-Chun Shen, Xu Zhu, and Yi Huang. 2016. iParker—A New Smart Car-Parking System Based on Dynamic Resource Allocation and Pricing. IEEE Transactions on Intelligent Transportation Systems 17(9): 2637-2647.
    [100] Gisela Labouvie-Vief and Marshall Medler. 2002. Affect optimization and affect complexity: modes and styles of regulation in adulthood. Psychol. Aging 17, 571–587. doi: 10.1037/0882-7974.17.4.571.
    [101] Gilbert Laporte. 1992. The Traveling Salesman Problem: An overview of exact and approximate algorithms. European Journal of Operational Research 59(2): 231-247.
    [102] Pedro Larrañaga, Cindy Kuijpers, R. Murga, I. Inza, and S. Dizdarevic. 1999. Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators. Artificial Intelligence Review 13: 129-170.
    [103] Andrew B. Lawson, Rachel Carroll, Christel Faes, Russell S. Kirby, Mehreteab Aregay, and Kevin Watjou. 2017. Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping. Environmetrics 28(8):e2465. DOI:10.1002/env.2465.
    [104] C.Y. Lee. 1961. An Algorithm for Path Connections and Its Applications. IEEE IRE Transactions on Electronic Computers EC 10(3): 346–365.
    [105] Nadav Levy and Itzhak Benenson. 2015. GIS-based method for assessing city parking patterns. Journal of Transport Geography 46: 220-231.
    [106] Xiangdong Li, Yuefeng Cen, Gang Cen, and Zengwei Xu. 2019. Prediction of short-term available parking space using LSTM model. In International Conference on Computer Science & Education (ICCSE). doi: 10.1109/ICCSE.2019.8845466.
    [107] Peng Li, Demin Li, and Xiaolu Zhang. 2013. CGPS: A Collaborative Game in Parking-Lot Search. In International Conference on Soft Computing Techniques and Engineering Application 105-113. doi: 10.1007/978-81-322-1695-7_13.
    [108] Yansong Li, Qian Luo, Jiajia Liu, Hongzhi Guo, and Nei Kato. 2019. TSP Security in Intelligent and Connected Vehicles: Challenges and Solutions. IEEE Wireless Communications 26(3): 125-131.
    [109] Y.H. Li, H.J. Mao, and Y.M. Qin. 2019. Vehicle Routing Problem with Multiple Time Windows and Batch Splitting Based on Inferior First Bidirectional Search Algorithm. In International Conference on Electrical, Mechanical and Computer Engineering (ICEMCE). doi:10.1088/1742-6596/1314/1/012116.
    [110] Fan Li and Yu Wang. 2007. Routing in vehicular ad hoc networks: A survey. IEEE Vehicular Technology Magazine 2(2): 12-22.
    [111] Andy Liaw and Matthew Wiener. 2002. Classification and regression by randomForest. R news 2(3): 18-22.
    [112] Thomas Liebig, Nico Piatkowski, Christian Bockermann, and Katharina Morik. 2017. Dynamic route planning with real-time traffic predictions. Information Systems 64: 258-265. doi: 10.1016/j.is.2016.01.007.
    [113] Shen Lin. 1965. Computer solutions of the traveling salesman problem. The Bell System Technical Journal 44 (10): 2245-2269.
    [114] Fandel Lin and Hsun-Ping Hsieh. 2018. An intelligent and interactive route planning maker for deploying new transportation services. In ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL) 620-621.
    [115] Fandel Lin and Hsun-Ping Hsieh. 2020. A Goal-Prioritized Algorithm for Additional Route Deployment on Existing Mass Transportation System. In IEEE International Conference on Data Mining (ICDM) 1130-1135, Sorrento, Italy.
    [116] Fandel Lin and Hsun-Ping Hsieh. 2021. A Joint Passenger Flow Inference and Path Recommender System for Deploying New Routes and Stations of Mass Transit Transportation, 2021. ACM Transactions on Knowledge Discovery from Data (TKDD).
    [117] Fandel Lin, Hsun-Ping Hsieh, and Jie-Yu Fang. 2020. A Route-Affecting Region Based Approach for Feature Extraction in Transportation Route Planning. In European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD) 275-290, Ghent, Belgium.
    [118] Shen Lin and B. W. Kernighan. 1973. An Effective Heuristic Algorithm for the Traveling-Salesman Problem. Operations Research 21 (2): 498–516.
    [119] Yongjie Lin, Xianfeng Yang, Nan Zou, and Lei Jia. 2013. Real-Time Bus Arrival Time Prediction: Case Study for Jinan, China. Journal of Transportation Engineering, 1133-1140.
    [120] C.Y. Lee. 1961. An Algorithm for Path Connections and Its Applications. IEEE IRE Transactions on Electronic Computers EC10(3): 346-365.
    [121] Bert La Maire and Valeri Mladenov. 2012. Comparison of Neural Networks for Solving the Travelling Salesman Problem. In Symposium on Neural Network Applications in Electrical Engineering. doi: 10.1109/NEUREL.2012.6419953.
    [122] Jacek Malczewski. 2006. GIS‐based multicriteria decision analysis: a survey of the literature, International Journal of Geographical Information Science 20(7): 703-726.
    [123] Jeffrey J. Martin and Diane L. Gill. 1991. The Relationships Among Competitive Orientation, Sport-Confidence, Self-Efficacy, Anxiety, and Performance. Journal of sport & exercise psychology 13: 149-159. doi: 10.1123/jsep.13.2.149.
    [124] Antonio Mauttone and María E. Urquhart. 2009. A route set construction algorithm for the transit network design problem. Computers & Operations Research 36: 2440-2449.
    [125] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. 2020. Reinforcement Learning for Combinatorial Optimization: A Survey. arXiv: 2003.03600v3.
    [126] Naourez Mejri, Mouna Ayari, Rami Langar, and Leila Saidane. 2016. Reservation-based multi-objective smart parking approach for smart cities. In IEEE International Smart Cities Conference (ISC2). doi: 10.1109/ISC2.2016.7580840.
    [127] Lingfeng Ming, Qi Hu, Ming Dong and Bolong Zheng. 2020. An Effective Fleet Management Strategy for Collaborative Spatio-Temporal Searching. In ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL), Seattle, WA, USA.
    [128] Giuseppe Musolino, Antonio Polimeni, Corrado Rindone, and Antonino Vitetta. 2013. Travel Time Forecasting and Dynamic Routes Design for Emergency Vehicles. Procedia - Social and Behavioral Sciences. doi: 10.1016/j.sbspro.2013.10.603.
    [129] John F. Nash Jr. 1950. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences 36: 48-49. doi: 10.1073/pnas.36.1.48.
    [130] Héctor Neyoy, Oscar Castillo, and José Soria. 2013. Dynamic fuzzy logic parameter tuning for ACO and its application in TSP problems. Recent Advances on Hybrid Intelligent Systems 259–271. doi:10.1007/978-3-642-33021-6_21.
    [131] Yiwen Nie, Wei Yang, Zhi Chen, Nanxue Lu, Liusheng Huang, and Huan Huang. 2021. Public Curb Parking Demand Estimation With POI Distribution. IEEE Transactions on Intelligent Transportation Systems (ITS). doi: 10.1109/TITS.2020.3046841.
    [132] Eneko Osaba, Xin-She Yang, Fernando Diaz, Pedro Lopez-Garcia, and Roberto Carballedo. 2016. An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems. Engineering Applications of Artificial Intelligence 48: 59-71.
    [133] Kevin Osanlou, Christophe Guettier, Andrei Bursuc, Tristan Cazenave, Eric Jacopin. 2019. Learning-based Preference Prediction for Constrained Multi-Criteria Path-Planning. ICAPS Scheduling and Planning Applications Workshop (SPARK). Corpus ID: 115146791.
    [134] Sinno Jialin Pan and Qiang Yang. 2009. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 22(10): 1345-1359. DOI: 10.1109/TKDE.2009.191.
    [135] Judea Pearl. 1984. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley Longman Publishing Co. p. 48.
    [136] Karl Pearson. 1905. The Problem of the Random Walk. Nature 72: 294.
    [137] Anders Peterson. 2007. The Origin-Destination Matrix Estimation Problem - Analysis and Computations. Doctoral dissertation, Department of Science and Technology. Linköping University, Sweden.
    [138] Jean-Yves Potvin. 1996. Genetic algorithms for the traveling salesman problem. Annals of Operations Research 63: 337-370.
    [139] Marcelo O. R. Prates, Pedro H. C. Avelar, Henrique Lemos, Luís C. Lamb, Moshe Y. Vardi. 2019. Learning to Solve NP-Complete Problems: A Graph Neural Network for Decision TSP. In AAAI Conference on Artificial Intelligence (AAAI). doi: 10.1609/aaai.v33i01.33014731.
    [140] Lorien Y. Pratt. 1992. Discriminability-Based Transfer between Neural Networks. In Advances in Neural Information Processing Systems (NIPS) 5 204–211.
    [141] Moschoula Pternea, Konstantinos Kepaptsoglou, and Matthew G. Karlaftis. 2015. Sustainable urban transit network design. Transportation Research Part A: Policy and Practice 77: 276-291.
    [142] Luca Quadrifoglio and Xiugang Li. 2009. A methodology to derive the critical demand density for designing and operating feeder transit services. Transportation Research Part B: Methodological 43(10): 922-935.
    [143] Michael N. Rice and Vassilis Tsotras. 2012. Bidirectional A* Search with Additive Approximation Bounds. In Annual Symposium on Combinatorial Search (SoCS).
    [144] Barbara Rodeker, Maria Cifuentes, and Liliana Favre. 2009. An Empirical Analysis of Approximation Algorithms for Euclidean TSP. In International Conference on Scientific Computing. 190-196.
    [145] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis II. 2009. An analysis of several heuristics for the traveling salesman problem. Fundamental Problems in Computing 45-69.
    [146] Wayne A. Sarasua, Prashant Malisetty, and Mashrur Chowdhury. 2011. Using GIS-based, Hitchcock Algorithm to Optimize Parking Allocations for Special Events. Applied GIS 7(2): 1-13.
    [147] Sebastian Schmoll and Matthias Schubert. 2020. Semi-Markov Reinforcement Learning for Stochastic Resource Collection. In International Joint Conference on Artificial Intelligence (IJCAI) 3349-3355. doi: 10.24963/ijcai.2020/463.
    [148] Michael Schneider, Andreas Stenger, and Dominik Goeke. 2014. The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations. PLoS ONE Transportation Science 48(4). doi: 10.1287/trsc.2013.0490.
    [149] Eshed Shaham, Ariel Felner, Nathan R. Sturtevant, and Jeffrey S. Rosenschein. 2018. Minimizing Node Expansions in Bidirectional Search with Consistent Heuristics. In International Symposium on Combinatorial Search (SoCS) 81-98.
    [150] Wei Shao, Flora D. Salim, Tao Gu, Ngoc-Thanh Dinh, and Jeffrey Chan. 2017. Traveling Officer Problem: Managing Car Parking Violations Efficiently Using Sensor Data. IEEE Internet of Things Journal. doi: 10.1109/JIOT.2017.2759218.
    [151] Lionel A. Silman, Zeev Barzily and Ury Passy. 1974. Planning the route system for urban buses. Computers & Operations Research 1(2): 201-211.
    [152] Dani Simons. 2012. SFpark: San Francisco Knows How to Park It. Sustainable Transportation 23: 26-27.
    [153] Qing Song, Meng Li, and Xiaolei Li. 2018. Accurate and fast path computation on large urban road networks: A general approach. PLoS ONE 13(2): e0192274. doi:10.1371/journal.pone.0192274.
    [154] Chris Stauffer and W. Eric L. Grimson. 1999. Adaptive background mixture models for real-time tracking. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition. (CVPR’99) (vol 2) 246-252.
    [155] Linda Steg and Robert Gifford. 2005. Sustainable transportation and quality of life. Journal of Transport Geography 13(1): 59-69.
    [156] Nathan R. Sturtevant and Ariel Felner. 2018. A Brief History and Recent Achievements in Bidirectional Search. In AAAI International Conference on Artificial Intelligence (AAAI) 8000-8007.
    [157] Hsien-Min Su and Chang-Ching Kuan. 2003. Planning and design guidelines. In Design Manual for Urban Sidewalks, ch. 4(1): 1-4.
    [158] Barret W. Thomas, Tobia Calogiuri, and Mike Hewitt. 2018. An exact bidirectional A⋆ approach for solving resource‐constrained shortest path problems. Wiley Online Library. doi: 10.1002/net.21856.
    [159] Wai Yuen Szeto and Yongzhong Wu. 2011. A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong. European Journal of Operational Research 209(2): 141-155.
    [160] Éric D. Taillard and Keld Helsgaun. 2018. POPMUSIC for the Travelling Salesman Problem. European Journal of Operational Research 272(2): 420-429.
    [161] Robert E. Tarjan. 1977. Finding optimum branchings. John Wiley & Sons. Networks 7: 25-35.
    [162] Dušan Teodorović and Panta Lučić. 2006. Intelligent parking systems. European Journal of Operational Research 175(3): 1666-1681.
    [163] Barrett W. Thomas, Tobia Calogiuri, and Mike Hewitt. 2018. An exact bidirectional A⋆ approach for solving resource‐constrained shortest path problems. Networks 73(2): 187-205. doi: 10.1002/net.21856.
    [164] Mahmoud Torabi and Rhonda J. Rosychuk. 2010. Spatio-Temporal Modelling of Disease Mapping of Rates. The Canadian Journal of Statistics / La Revue Canadienne De Statistique 38(4): 698-715. DOI: jstor.org/stable/27896053.
    [165] Vasilis Verroios, Vasilis Efstathiou, and Alex Delis. 2011. Reaching Available Public Parking Spaces in Urban Environments Using Ad Hoc Networking. In IEEE International Conference on Mobile Data Management (MDM). doi: 10.1109/MDM.2011.49.
    [166] Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis. 2005. Geometric containers for efficient shortest-path computation. Journal of Experimental Algorithmics 10: 1-30.
    [167] Yuandong Wang, Xuelian Lin, Hua Wei, Tianyu Wo, Zhou Huang, Yong Zhang, and Jie Xu. 2019. A Unified Framework with Multi-source Data for Predicting Passenger Demands of Ride Services. ACM Transactions on Knowledge Discovery from Data (TKDD). DOI: https://doi.org/10.1145/3355563.
    [168] Yu Wei and Mu-Chen Chen. 2012. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transportation Research Part C: Emerging Technologies 21: 148-162.
    [169] Hua Wei, Yuandong Wang, Tianyu Wo, Yaxiao Liu, and Jie Xu. 2016. ZEST: A Hybrid Model on Predicting Passenger Demand for Chauffeured Car Service. In ACM International Conference on Information and Knowledge Management (CIKM), DOI: 10.1145/2983323.2983667.
    [170] Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. 2018. IntelliLight: A Reinforcement Learning Approach for Intelligent Traffic Light Control. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) 2496–2505. doi: 10.1145/3219819.3220096.
    [171] Mingkang Wu, Haobin Jiang, and Chin-AnTan. 2021. Automated Parking Space Allocation during Transition with both Human-Operated and Autonomous Vehicles. Applied Science 11(2): 855. doi: 10.3390/app11020855.
    [172] Zuoyong Xiang, Zhenyu Chen, Xingyu Gao, Xinjun Wang, Fangchun Di, Lixin Li, Guangyi Liu, and Yi Zhang. 2015. Solving Large-Scale TSP Using a Fast Wedging Insertion Partitioning Approach. Mathematical Problems in Engineering 1-8. doi:10.1155/2015/854218.
    [173] Peng Xie, Tianrui Li, Jia Liu, Shengdong Du, Xin Yang, and Junbo Zhang. 2020. Urban flow prediction from spatiotemporal data using machine learning: A survey. Information Fusion 59: 1-12. DOI: 10.1016/j.inffus.2020.01.002.
    [174] Yadan Yan, Qiang Meng, Shuaian Wang, and Xiucheng Guo. 2012. Robust optimization model of schedule design for a fixed bus route. Transportation Research Part C: Emerging Technologies 25: 113-121.
    [175] Hai Yang and Jing Zhou. 1998. Optimal traffic counting locations for origin–destination matrix estimation. Transportation Research Part B: Methodological 32(2): 109-126.
    [176] Shuguan Yang, Wei Ma, Xidong Pi, and SeanQian. 2019. A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources. Transportation Research Part C: Emerging Technologies 107: 248-265.
    [177] Dingqi Yang, Daqing Zhang, Vincent W. Zheng, Zhiyong Yu. 2015. Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs. IEEE Transaction on Systems, Man, and Cybernetics: Systems (TSMC) 45(1): 129-142.
    [178] Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, and Zhenhui Li. 2019. Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic Prediction. In AAAI Conference on Artificial Intelligence (AAAI) 5668-5675.
    [179] Menno Yap, Oded Cats, and Bart van Arem. 2018. Crowding valuation in urban tram and bus transportation based on smart card data. Transportmetrica A: Transport Science. DOI: 10.1080/23249935.2018.1537319.
    [180] Percy P.C. Yip, Yoh-Han Pao. 1995. Combinatorial optimization with use of guided evolutionary simulated annealing. IEEE Transactions on Neural Network 6: 290-295.
    [181] Takayuki Yoshizumi, Teruhisa Miura, and Toru Ishida. 2000. A* with Partial Expansion for Large Branching Factor Problems. In AAAI International Conference on Artificial Intelligence. (AAAI’00) 923-929.
    [182] Jongmin Yu, Jeonghwan Gwak, and Moongu Jeon. 2016. Gaussian-Poisson mixture model for anomaly detection of crowd behaviour. In International Conference on Control, Automation and Information Sciences (ICCAIS) 106-111. DOI: 10.1109/ICCAIS.2016.7822444.
    [183] Ruonan Zhang, Santosh N. Kabadi, and Abraham P. Punnen. 2011. The minimum spanning tree problem with conflict constraints and its variations. Discrete Optimization 8: 191-205.
    [184] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2019. Batch Processing of Shortest Path Queries in Road Networks. In Australasian Database Conference: Databases Theory and Applications 3-16.
    [185] Weijia Zhang, Hao Liu, Yanchi Liu, Jingbo Zhou, Tong Xu, and Hui Xiong. 2020. Semi-Supervised City-Wide Parking Availability Prediction via Hierarchical Recurrent Graph Neural Network. IEEE Transactions on Knowledge and Data Engineering (TKDE). doi: 10.1109/TKDE.2020.3034140.
    [186] Liming Zhang, Dieter Pfoser, and Andreas Züfle. 2020. Station-to-User Transfer Learning: Towards Explainable User Clustering Through Latent Trip Signatures Using Tidal-Regularized Non-Negative Matrix Factorization. In ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL) 303-313.
    [187] Wenfeng Zhang, Zhongke Shi, and Zhiyong Luo. 2008. Prediction of urban passenger transport based-on wavelet SVM with quantum-inspired evolutionary algorithm. In 2008 IEEE International Joint Conference on Neural Networks (IJCNN).
    [188] Jiandong Zhao, Yujie Guo, and Xiaohong Duan. 2017. Dynamic Path Planning of Emergency Vehicles Based on Travel Time Prediction. Journal of Advanced Transportation. doi: 10.1155/2017/9184891.
    [189] Bolong Zheng, Qi Hu, Lingfeng Ming, Jilin Hu, Lu Chen, Kai Zheng, and Christian S. Jensen. 2020. SOUP: Spatial-Temporal Demand Forecasting and Competitive Supply. arXiv: 2009.12157.
    [190] Brain D. Ziebart, Anind K. Dey, and James Andrew Bagnell. 2008. Fast Planning for Dynamic Preferences. In International Conference on Automated Planning and Scheduling (ICAPS). doi: 10.5555/3037281.3037333.
    [191] Onno Zoeter, Christopher Dance, Stéphane Clinchant, and Jean-Marc Andreoli. 2014. New algorithms for parking demand management and a city-scale deployment. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) 1819–1828. doi: 10.1145/2623330.2623359.

    無法下載圖示 校內:2026-07-01公開
    校外:2026-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE