簡易檢索 / 詳目顯示

研究生: 簡柏倫
Jian, Bo-Lun
論文名稱: 個別甲基胺碘化鉛和碘化鉛銫鈣鈦礦微米結構之光物理和雷射特性
Photo-physical and lasing properties of individual methylammonium lead iodide and cesium lead iodide perovskite microstructures
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 83
中文關鍵詞: 有機鈣鈦礦無機鈣鈦礦螢光色散方程式耳語廊模態單模隨機雷射
外文關鍵詞: MAPbI3 perovskite, CsPbI3 perovskite, photoluminescence, dispersion function, whispering gallery mode, single mode, random lasing
相關次數: 點閱:117下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將分成兩個部分進行探討,第一部份是在單晶有機鈣鈦礦(MAPbI3)的耳語廊模態(WGM)腔體內,利用微米雷射光點之光致螢光的方法來得知波長與折射率的關係;我們發現在長波長的範圍中,腔體內存在TM-quasi-WGM的模態,並推導出在微米晶體內的Sellmeier之色散方程式。

    第二部分一樣是利用微米雷射光點之光致螢光(u-PL)來比較有機鈣鈦礦薄膜、無機鈣鈦礦(CsPbI3)薄膜與微米球的雷射特性,例如: 雷射壽命、閾值和品質因子等等。我們觀測到無機奈米球具有非常長的雷射壽命,且閾值非常低。同時,我們在無機鈣鈦礦奈米球的螢光光譜內,發現有單模雷射的產生,並計算其邊模抑制比來判斷其單模的品質;另外,為了進一步了解奈米球的其他光學特性,我們也有估算其特徵溫度和探討尺寸大小與閾值的關係。最後,利用不同收光角度來證明無機鈣鈦礦薄膜雷射的機制是來自於隨機雷射。

    This study is divided into two parts. In the first part, we report on the wavelength dependence of the refractive index near resonant range from a single well-faceted MAPbI3 perovskite microcavity with quasi-whispering-gallery-mode (quasi-WGM) by using micro-photoluminescence (µ-PL) technique. The observed cavity modes are well matched to TM polarization quasi-WGM in long wavelength side. We also deduced a Sellmeier’s dispersion function for the perovskite single microcrystal.

    The second part, we investigate the lasing behaviors from CH3NH3PbI3 (MAPbI3) thin films, CsPbI3 thin films as well as individual CsPbI3 micro-spheres. We observed CsPbI3 micro-spheres with WGM cavity have the best lasing performance among these three structures. Furthermore, single-mode lasing was achieved in individual CsPbI3 micro-spheres. We deduce the side- mode suppression ratio to evaluate the performance of the single-mode laser. We also estimate the lasing characteristic temperature and the relation between crystal diameter and lasing threshold. At last, we employed the emission angle-dependent PL to verify the underlying lasing mechanism of CsPbI3 thin film for random lasing.

    Contents 摘要 I Abstract II Acknowledgements III Contents V List of Tables VII Lists of Figures VIII Chapter 1. Introduction 1 1.1 Preface 1 1.2 Motivation 14 Chapter 2. Background Theory 16 2.1 Organic perovskite MAPbI3 16 2.1.1 Structural phase 16 2.1.2 Basically optical characteristic 18 2.2 Inorganic perovskite CsPbI3 21 2.2.1 Structural phase 21 2.2.2 Basically optical characteristic 23 2.3 Micro-cavity 25 2.3.1 Fabry-Perot (F-P) cavity 25 2.3.2 Whispering gallery mode (WGM) cavity[79] 25 2.3.3 Mode equation[79] 26 2.3.4 Corner loss in polygonal cavity [82] 29 2.4 Band-to-band transition[84] 30 2.5 Band filling effect[85] 32 2.6 Random lasing[86] 34 Chapter 3. Experimental process and measurement 35 3.1 Sample prepared by vapor deposition 35 3.1.1 MAPbI3 perovskite micro-crystal and film 35 3.1.2 CsPbI3 perovskite micro-sphere and film 37 3.2 Sample Analysis 38 3.2.1 Optical microscope (OM) 38 3.2.2 Field Emission Scanning Electron Microscopy (FE-SEM) 39 3.2.3 X-ray Diffraction (XRD) 39 3.2.4 Atomic force microscope (AFM) 40 3.3 Measurement Instrument 41 3.3.1 Micro-Photoluminescence System for 377 nm laser 41 3.3.2 Micro-Photoluminescence System for 355 nm laser 42 3.3.3 Absorption optical system 43 Chapter 4. Experiment Results and Discussion 44 4.1 MAPbI3 micro-crystal 44 4.1.1 Structure Analysis 44 4.1.2 Basic optical characteristic 48 4.1.3 Identification of cavity mode 50 4.1.4 Deducing Sellmeier’s dispersion function 54 4.2 MAPbI3 film 57 4.2.1 Structure Analysis 57 4.2.2 Lasing behavior 58 4.3 CsPbI3 micro-sphere 60 4.3.1 Structure Analysis 60 4.3.2 Basic optical characteristic 61 4.3.3 Single-mode lasing behavior 62 4.3.4 Side-mode suppression ratio 64 4.3.5 Lasing characteristic temperature 65 4.3.6 The relationship between diameter and lasing threshold 66 4.4 CsPbI3 film 68 4.4.1 Structure Analysis 68 4.4.2 Lasing behavior 69 4.4.3 The verification of Random lasing 71 Chapter 5. Conclusion and Future work 73 5.1 Conclusion 73 5.2 Future work 74 Chapter 6. Reference 75

    [1] R. Gustav, "Beschreibung einiger neuen Mineralien des Urals," Annalen der Physik, vol. 124, pp. 551-573, 1839.
    [2] Y. Wang, Z. Lv, L. Zhou, X. Chen, J. Chen, Y. Zhou, et al., "Emerging perovskite materials for high density data storage and artificial synapses," Journal of Materials Chemistry C, vol. 6, pp. 1600-1617, 2018.
    [3] W.-J. Yin, T. Shi, and Y. Yan, "Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance," Advanced Materials, vol. 26, pp. 4653-4658, 2014.
    [4] C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, et al., "Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination," Journal of the American Chemical Society, vol. 136, pp. 5189-5192, 2014.
    [5] M. B. Johnston and L. M. Herz, "Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies," Accounts of Chemical Research, vol. 49, pp. 146-154, 2016.
    [6] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
    [7] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, pp. 4088-4093, 2011.
    [8] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science, vol. 338, p. 643, 2012.
    [9] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, et al., "Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors," Nature Photonics, vol. 7, p. 486, 2013.
    [10] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, p. 316, 2013.
    [11] https://www.nrel.gov/pv/assets/images/thumb-best-research-cell-efficiencies-190416.png, 2019.
    [12] D. Wei, X. Xiuzhen, Z. Xiujuan, Z. Yedong, J. Xiangcheng, W. Liang, et al., "Organometal Halide Perovskite Quantum Dot Light-Emitting Diodes," Advanced Functional Materials, vol. 26, pp. 4797-4802, 2016.
    [13] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, et al., "Perovskite Materials for Light-Emitting Diodes and Lasers," Advanced Materials, vol. 28, pp. 6804-6834, 2016.
    [14] J. Chen, T. Shi, X. Li, B. Zhou, H. Cao, and Y. Wang, "Effect of crystal structures on the stability of CH3NH3PbI3 under humidity environment," Solar Energy, vol. 136, pp. 470-474, 2016.
    [15] "The efficiency limit of CH3NH3PbI3 perovskite solar cells," Applied Physics Letters, vol. 106, p. 221104, 2015.
    [16] O. D. Miller, E. Yablonovitch, and S. R. Kurtz, "Strong Internal and External Luminescence as Solar Cells Approach the Shockley - Queisser Limit," IEEE Journal of Photovoltaics, vol. 2, pp. 303-311, 2012.
    [17] W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, "Halide perovskite materials for solar cells: a theoretical review," Journal of Materials Chemistry A, vol. 3, pp. 8926-8942, 2015.
    [18] D. B. Mitzi, K. Chondroudis, and C. R. Kagan, "Organic-inorganic electronics," IBM Journal of Research and Development, vol. 45, pp. 29-45, 2001.
    [19] D. B. Mitzi, "Thin-Film Deposition of Organic−Inorganic Hybrid Materials," Chemistry of Materials, vol. 13, pp. 3283-3298, 2001.
    [20] D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, "Conducting Layered Organic-inorganic Halides Containing Oriented Perovskite Sheets," Science, vol. 267, p. 1473, 1995.
    [21] W. Deng, H. Fang, X. Jin, X. Zhang, X. Zhang, and J. Jie, "Organic–inorganic hybrid perovskite quantum dots for light-emitting diodes," Journal of Materials Chemistry C, vol. 6, pp. 4831-4841, 2018.
    [22] N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, et al., "Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells," Nature Photonics, vol. 10, p. 699, 2016.
    [23] H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, et al., "Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes," Science, vol. 350, p. 1222, 2015.
    [24] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, et al., "Low-temperature solution-processed wavelength-tunable perovskites for lasing," Nat Mater, vol. 13, pp. 476-80, 2014.
    [25] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, et al., "Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors," Nature Materials, vol. 14, p. 636, 2015.
    [26] K. Wang, S. Sun, C. Zhang, W. Sun, Z. Gu, S. Xiao, et al., "Whispering-gallery-mode based CH3NH3PbBr3 perovskite microrod lasers with high quality factors," Materials Chemistry Frontiers, vol. 1, pp. 477-481, 2017.
    [27] Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, "Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers," Nano Letters, vol. 14, pp. 5995-6001, 2014.
    [28] R. Dhanker, A. N. Brigeman, A. V. Larsen, R. J. Stewart, J. B. Asbury, and N. C. Giebink, "Random lasing in organo-lead halide perovskite microcrystal networks," Applied Physics Letters, vol. 105, p. 151112, 2014.
    [29] J. Liang, C. Wang, P. Zhao, Z. Lu, Y. Ma, Z. Xu, et al., "Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices," Nanoscale, vol. 9, pp. 11841-11845, 2017.
    [30] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, et al., "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Letters, vol. 15, pp. 3692-3696, 2015.
    [31] W. Yue, L. Xiaoming, S. Jizhong, X. Lian, Z. Haibo, and S. Handong, "All-Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics," Advanced Materials, vol. 27, pp. 7101-7108, 2015.
    [32] J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, et al., "All-Inorganic Perovskite Solar Cells," Journal of the American Chemical Society, vol. 138, pp. 15829-15832, 2016.
    [33] J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, et al., "Correction to “All-Inorganic Perovskite Solar Cells”," Journal of the American Chemical Society, vol. 139, pp. 2852-2852, 2017.
    [34] P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, et al., "Solvent Engineering for Ambient-Air-Processed, Phase-Stable CsPbI3 in Perovskite Solar Cells," The Journal of Physical Chemistry Letters, vol. 7, pp. 3603-3608, 2016.
    [35] M. Kulbak, D. Cahen, and G. Hodes, "How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells," The Journal of Physical Chemistry Letters, vol. 6, pp. 2452-2456, 2015.
    [36] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, et al., "Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells," The Journal of Physical Chemistry Letters, vol. 7, pp. 167-172, 2016.
    [37] A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, et al., "Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics," Science, vol. 354, p. 92, 2016.
    [38] S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, et al., "Lasing in robust cesium lead halide perovskite nanowires," Proc Natl Acad Sci U S A, vol. 113, pp. 1993-8, 2016.
    [39] Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, "High-Quality Whispering-Gallery-Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets," Advanced Functional Materials, vol. 26, pp. 6238-6245, 2016.
    [40] B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, et al., "Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres," ACS Nano, vol. 11, pp. 10681-10688, 2017.
    [41] D. Weber, "CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure," in Zeitschrift für Naturforschung B vol. 33, ed, 1978, p. 1443.
    [42] H. L. Wells, "Über die Cäsium- und Kalium-Bleihalogenide," Zeitschrift für anorganische Chemie, vol. 3, pp. 195-210, 1893.
    [43] P. S. Whitfield, N. Herron, W. E. Guise, K. Page, Y. Q. Cheng, I. Milas, et al., "Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide," Scientific Reports, vol. 6, p. 35685, 2016.
    [44] F. Brivio, J. M. Frost, J. M. Skelton, A. J. Jackson, O. J. Weber, M. T. Weller, et al., "Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide," Physical Review B, vol. 92, p. 144308, 2015.
    [45] M. T. Weller, O. J. Weber, P. F. Henry, A. M. Di Pumpo, and T. C. Hansen, "Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K," Chemical Communications, vol. 51, pp. 4180-4183, 2015.
    [46] A. Poglitsch and D. Weber, "Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy," The Journal of Chemical Physics, vol. 87, pp. 6373-6378, 1987.
    [47] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, et al., "Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications," Journal of Materials Chemistry A, vol. 1, pp. 5628-5641, 2013.
    [48] N. Onoda-Yamamuro, T. Matsuo, and H. Suga, "Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II)†," Journal of Physics and Chemistry of Solids, vol. 51, pp. 1383-1395, 1990.
    [49] R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, "Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films," Advanced Functional Materials, vol. 25, pp. 6218-6227, 2015.
    [50] C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, "Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3–xClx," The Journal of Physical Chemistry Letters, vol. 5, pp. 1300-1306, 2014.
    [51] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, "Photoelectronic Responses in Solution-Processed Perovskite CH3NH3PbI3 Solar Cells Studied by Photoluminescence and Photoabsorption Spectroscopy," IEEE Journal of Photovoltaics, vol. 5, pp. 401-405, 2015.
    [52] V. D’Innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, et al., "Excitons versus free charges in organo-lead tri-halide perovskites," Nature communications, vol. 5, p. 3586, 2014.
    [53] J. Even, L. Pedesseau, and C. Katan, "Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites," The Journal of Physical Chemistry C, vol. 118, pp. 11566-11572, 2014.
    [54] M. A. Green, A. Ho-Baillie, and H. J. Snaith, "The emergence of perovskite solar cells," Nature Photonics, vol. 8, p. 506, 2014.
    [55] T. Ishihara, "Optical properties of PbI-based perovskite structures," Journal of Luminescence, vol. 60-61, pp. 269-274, 1994.
    [56] J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J.-S. Lauret, D. Sapori, et al., "Solid-State Physics Perspective on Hybrid Perovskite Semiconductors," The Journal of Physical Chemistry C, vol. 119, pp. 10161-10177, 2015.
    [57] J. Even, L. Pedesseau, J.-M. Jancu, and C. Katan, "DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells," physica status solidi (RRL) – Rapid Research Letters, vol. 8, pp. 31-35, 2013.
    [58] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, "Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes," Applied Physics Express, vol. 7, p. 032302, 2014.
    [59] M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, et al., "Structural, electronic and optical properties of CsPbX3 (X=Cl, Br, I) for energy storage and hybrid solar cell applications," Journal of Alloys and Compounds, vol. 705, pp. 828-839, 2017.
    [60] C. K. MØLler, "Crystal Structure and Photoconductivity of Cæsium Plumbohalides," Nature, vol. 182, p. 1436, 1958.
    [61] A. Lim and S.-Y. Jeong, "Twin structure by 133Cs NMR in ferroelastic CsPbCl3 crystal," Solid state communications, vol. 110, pp. 131-136, 1999.
    [62] S. Gonzalez-Carrero, R. E. Galian, and J. Pérez-Prieto, "Organic-inorganic and all-inorganic lead halide nanoparticles," Optics express, vol. 24, pp. A285-A301, 2016.
    [63] M. Cola, V. Massarotti, R. Riccardi, and C. Sinistri, "Binary systems formed by lead bromide with (Li, Na, K, Rb, Cs and Tl) Br: a DTA and diffractometric study," Zeitschrift für Naturforschung A, vol. 26, pp. 1328-1332, 1971.
    [64] D. M. Trots and S. V. Myagkota, "High-temperature structural evolution of caesium and rubidium triiodoplumbates," Journal of Physics and Chemistry of Solids, vol. 69, pp. 2520-2526, 2008.
    [65] D. Zhang, S. W. Eaton, Y. Yu, L. Dou, and P. Yang, "Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires," Journal of the American Chemical Society, vol. 137, pp. 9230-9233, 2015.
    [66] G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, et al., "Inorganic caesium lead iodide perovskite solar cells," Journal of Materials Chemistry A, vol. 3, pp. 19688-19695, 2015.
    [67] S. M. Lee, C. J. Moon, H. Lim, Y. Lee, M. Y. Choi, and J. Bang, "Temperature-Dependent Photoluminescence of Cesium Lead Halide Perovskite Quantum Dots: Splitting of the Photoluminescence Peaks of CsPbBr3 and CsPb(Br/I)3 Quantum Dots at Low Temperature," The Journal of Physical Chemistry C, vol. 121, pp. 26054-26062, 2017.
    [68] B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J.-B. Lee, et al., "Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots," The Journal of Physical Chemistry C, vol. 115, pp. 436-442, 2011.
    [69] D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, "Temperature dependence of the photoluminescence properties of colloidal CdSe ZnS core/shell quantum dots embedded in a polystyrene matrix," Physical Review B, vol. 71, p. 235409, 2005.
    [70] J. Li, X. Yuan, P. Jing, J. Li, M. Wei, J. Hua, et al., "Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films," RSC Advances, vol. 6, pp. 78311-78316, 2016.
    [71] G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, "Temperature and Size Dependence of Nonradiative Relaxation and Exciton−Phonon Coupling in Colloidal CdTe Quantum Dots," The Journal of Physical Chemistry C, vol. 111, pp. 5846-5849, 2007.
    [72] K. P. O’Donnell and X. Chen, "Temperature dependence of semiconductor band gaps," Applied Physics Letters, vol. 58, pp. 2924-2926, 1991.
    [73] A. Baldini, "Numerical Data and Functional Relationships In Science and Technology. Grp. 1: Nuclear and Particle Physics. Vol. 12: Total cross-sections for reactions of high-energy particles (including elastic, topological, inclusive and exclusive reactions). Subvol," 1988.
    [74] J. S. Manser, J. A. Christians, and P. V. Kamat, "Intriguing Optoelectronic Properties of Metal Halide Perovskites," Chemical Reviews, vol. 116, pp. 12956-13008, 2016/11/09 2016.
    [75] J. Kang and L.-W. Wang, "High defect tolerance in lead halide perovskite CsPbBr3," The journal of physical chemistry letters, vol. 8, pp. 489-493, 2017.
    [76] A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Pérez-Osorio, H. J. Snaith, et al., "Electron–phonon coupling in hybrid lead halide perovskites," Nature Communications, vol. 7, p. 11755, 2016.
    [77] H.-H. Fang, R. Raissa, M. Abdu-Aguye, S. Adjokatse, G. R. Blake, J. Even, et al., "Photophysics of Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals," Advanced Functional Materials, vol. 25, pp. 2378-2385, 2015.
    [78] H. Dong, B. Zhou, J. Li, J. Zhan, and L. Zhang, "Ultraviolet lasing behavior in ZnO optical microcavities," Journal of Materiomics, vol. 3, pp. 255-266, 2017.
    [79] "Identification of dispersion-dependent hexagonal cavity modes of an individual ZnO nanonail," Applied Physics Letters, vol. 92, p. 263102, 2008.
    [80] V. Ursaki, A. Burlacu, E. Rusu, V. Postolake, and I. Tiginyanu, "Whispering gallery modes and random lasing in ZnO microstructures," Journal of Optics A: Pure and Applied Optics, vol. 11, p. 075001, 2009.
    [81] A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, et al., "Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells," Chemistry of Materials, vol. 27, pp. 3397-3407, 2015.
    [82] O. B. M. G. Christof Peter Dietrich, "Cavity effects in polygonal resonators," Ph.D, 2012.
    [83] J. Wiersig, "Hexagonal dielectric resonators and microcrystal lasers," Physical Review A, vol. 67, p. 023807, 2003.
    [84] P. W. Epperlein, Semiconductor laser engineering, reliability and diagnostics: a practical approach to high power and single mode devices: John Wiley & Sons, 2013.
    [85] J. S. Manser and P. V. Kamat, "Band filling with free charge carriers in organometal halide perovskites," Nature Photonics, vol. 8, p. 737, 2014.
    [86] Z.-F. Shi, X.-G. Sun, D. Wu, T.-T. Xu, Y.-T. Tian, Y.-T. Zhang, et al., "Near-infrared random lasing realized in a perovskite CH3NH3PbI3 thin film," Journal of Materials Chemistry C, vol. 4, pp. 8373-8379, 2016.
    [87] S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. Xiong, "Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices," Advanced Optical Materials, vol. 2, pp. 838-844, 2014.
    [88] P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, et al., "Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry," The Journal of Physical Chemistry Letters, vol. 6, pp. 66-71, 2015.
    [89] M. T. Hill and M. C. Gather, "Advances in small lasers," Nature Photonics, vol. 8, p. 908, 2014.
    [90] H.-H. Fang, R. Ding, S.-Y. Lu, Y.-D. Yang, Q.-D. Chen, J. Feng, et al., "Whispering-gallery mode lasing from patterned molecular single-crystalline microcavity array," Laser & Photonics Reviews, vol. 7, pp. 281-288, 2013.
    [91] J. Liu, S. Lee, Y. H. Ahn, J.-Y. Park, K. H. Koh, and K. H. Park, "Identification of dispersion-dependent hexagonal cavity modes of an individual ZnO nanonail," Applied Physics Letters, vol. 92, p. 263102, 2008.
    [92] L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, et al., "Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks," Solar Energy Materials and Solar Cells, vol. 147, pp. 327-333, 2016.
    [93] J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides," The Journal of Physical Chemistry B, vol. 107, pp. 8816-8828, 2003.
    [94] B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, "Single GaAs/GaAsP Coaxial Core−Shell Nanowire Lasers," Nano Letters, vol. 9, pp. 112-116, 2009.
    [95] Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, et al., "Single-Nanowire Single-Mode Laser," Nano Letters, vol. 11, pp. 1122-1126, 2011.
    [96] Y. Y. Wang, C. X. Xu, M. M. Jiang, J. T. Li, J. Dai, J. F. Lu, et al., "Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect," Nanoscale, vol. 8, pp. 16631-16639, 2016.
    [97] Y. Xiao, C. Meng, X. Wu, and L. Tong, "Single mode lasing in coupled nanowires," Applied Physics Letters, vol. 99, p. 023109, 2011.
    [98] H. Xu, J. B. Wright, T.-S. Luk, J. J. Figiel, K. Cross, L. F. Lester, et al., "Single-mode lasing of GaN nanowire-pairs," Applied Physics Letters, vol. 101, p. 113106, 2012.
    [99] H. D. Sun, T. Makino, N. T. Tuan, Y. Segawa, Z. K. Tang, G. K. L. Wong, et al., "Stimulated emission induced by exciton–exciton scattering in ZnO/ZnMgO multiquantum wells up to room temperature," Applied Physics Letters, vol. 77, pp. 4250-4252, 2000.
    [100] X. Liu, S. T. Ha, Q. Zhang, M. de la Mata, C. Magen, J. Arbiol, et al., "Whispering Gallery Mode Lasing from Hexagonal Shaped Layered Lead Iodide Crystals," ACS Nano, vol. 9, pp. 687-695, 2015.
    [101] A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z. K. Tang, et al., "Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices," Applied Physics Letters, vol. 77, pp. 2204-2206, 2000.
    [102] "T. Honda, H. Kawanishi, T. Sakaguchi, F. Koyama, and K. Iga, “Characteristic Temperature Estimation for GaN-Based Lasers,” MRS Proceedings, vol. 537, p. G6.2, 1998."
    [103] A. K. Bhowmik, "Polygonal optical cavities," Applied Optics, vol. 39, pp. 3071-3075, 2000.
    [104] U. Reona, F. Masayuki, S. Atsushi, B. Toshihiko, and K. Yasuo, "GaInAsP Microdisk Injection Laser with Benzocyclobutene Polymer Cladding and Its Athermal Effect," Japanese Journal of Applied Physics, vol. 41, p. 6364, 2002.
    [105] D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, et al., "Whispering Gallery Mode Lasing from Zinc Oxide Hexagonal Nanodisks," ACS Nano, vol. 4, pp. 3270-3276, 2010.
    [106] Y. Z. Huang, Z. Pan, and R. H. Wu, "Analysis of the optical confinement factor in semiconductor lasers," Journal of Applied Physics, vol. 79, pp. 3827-3830, 1996.
    [107] H. Cao, Y. Zhao, H. Ong, and R. Chang, "Far-field characteristics of random lasers," Physical Review B, vol. 59, p. 15107, 1999.
    [108] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random Laser Action in Semiconductor Powder," Physical Review Letters, vol. 82, pp. 2278-2281, 1999.
    [109] D. S. Wiersma, "Random lasers explained?," Nature Photonics, vol. 3, p. 246, 2009.

    無法下載圖示 校內:2024-07-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE