簡易檢索 / 詳目顯示

研究生: 李信宏
Lee, Hsin-Hung
論文名稱: 有限高柱體頂部下沖氣流對Karman型態渦流溢放影響實驗之研究
An Experimental Study on the Free-end Downwash Effect to Karman-type Vortex Shedding from a Finite Cylinder
指導教授: 苗君易
Miau, J.J.
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 106
中文關鍵詞: 有限高度柱體下沖流場結構Karman型態渦流溢放條件取樣
外文關鍵詞: Finite Cylinder, Downwash Motion, Karman-type Vortex Shedding, Conditional Sampling
相關次數: 點閱:100下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 體流經一鈍形體流場在流裡力學上是一個重要的研究課題,特別是有許多學者針對二維圓柱或方柱進行針對不同參數例如展旋比、渦流溢放特性、升阻力係數的變化及雷諾數效應等進行一系列研究與探討。近年來,因為在工程實務的需求上,許多學者針對三維的鈍形體流場結構及特性進行相關研究。
    本研究利用流場可視化與風洞實驗中模型受力與熱線進行側向流場量測等實驗方式,針對流體流經有限高度之圓柱與方柱時,在頂部會有下沖流場結構與側向Karman型態渦流溢放之間相互影響因素進行探討。風洞實驗在內政部建築研究所歸仁建築風洞內進行,本研究風洞實驗所使用主要儀器有六力平衡儀、熱線探針、移動機構及資料擷取系統;有關視流實驗染液施放及PIV在成大流體系統感測實驗室內水槽進行,另一部份在內政部建研所的風洞內進行,包含有染液施放之視流實驗、PIV、表面油流實驗及煙流實驗。
    本研究在風洞受力及流場量測之數據處理的方法上主要是採用西爾伯特-黃轉換法(HHT),將量測到橫風向與垂直向風力進行時間頻率域的轉換,並將所得HHT結果及設定頻率及振幅條件針對3D 柱體進行流場型態的分類,本研究主要將流體流經有限高度之柱體流場區分為幾種不同型態。
    經由染液視流實驗結果可以發現,在有限高度方柱模型周圍流場可以觀察到不同的流場型態,且流場型態00的佔整個實驗實驗時間比例是最高,所代表意義為流場是相當三維之狀態。於油流實驗結果發現,在底部三維分離散效應所留下痕跡,於高雷諾數與高寬比高的方柱較明顯。高寬比為6方柱在PIV與煙流實驗結果可以觀察出,流體流經柱體頂部後,下沖氣流會有上下擺動現象,且向下流動時流向角度較高寬比為2模型大。
    在風洞實驗結果經由分析後可以發現,將4種不同流場型態經由時間比重的統計,流場型態00在有限高的方柱將近60%,當模型為圓柱時,時間比重更高達70%。在實驗數據分析過程發現,其低頻分量的訊號佔有很高的能量,文中有針對此進一步探討後發現,這與4種不同流場型態中,00型態所佔相關性最高,且在高寬比為6方柱兩側利用熱線進行速度擾動量測,發現熱線與橫風向受力低頻分量的相關性為正相關,即為對稱的型態,但是在渦流溢放頻率域之分量則呈現反對稱的型態。

    This study intends to investigate flow pass a finite cylinder with experiments carried out in a wind tunnel and a water channel. At first, the instantaneous data of lateral and vertical wind force on a finite cylinder was analyzed by the HHT method, and the each IMF component signal was decomposed. By a conditional sampling analyzing the aerodynamic forces experienced by a finite cylinder, four characteristic flow patterns can be categorized. These four flow patterns are named 00, 01, 10 and 11. The pattern 00 represents the flow pattern that neither the cross-wind vortex shedding nor the downwash motion is obvious; the pattern 10 represents the one that the vortex shedding is prominent but the downwash motion is not; the pattern 01 represents the pattern that the downwash motion is prominent but the vortex shedding is not; the pattern 11 implies the situation that both the vortex shedding and the downwash motion are prominent.
    In the water channel experiments, the visualization results obtained by the dye injection technique clearly revealed the four flow patterns around a finite square cylinder.
    In the wind tunnel experiments, the weighting distributions of the four flow patterns for the flow around a finite height square and circular cylinder indicated that the case 00 was the most popularly case. This flow pattern is mainly due to the low-frequency fluctuating motions around the finite cylinder model and the downwash motion over the free-end of the model. Moreover, it is found that this fluctuating motion is symmetric in the lateral direction mainly, which is notably different from the Karman-type vortex shedding anti-symmetric in the lateral direction

    CONTENTS ARSTRACT IN CHINESE I ABSTRACT XVII ACKNOWLEDGEMENT XIX CONTENTS XXI LIST OF TABLES XXIII LIST OF FIGURES XXII NOMENCLATURE XXVIII CHAPTER I INTRUDUCTION 1 1 . 1 Background 1 1 . 2 Literature Survey 2 1 . 3 Objectives 8 1 . 4 Research Approaches 9 CHAPTER II EXPERIMENTAL SETUP 11 2 . 1 PIV and Dye Inject Visualization Experiment 11 2 . 2 Oil-film and Smoke Visualization Experiment 13 2 . 3 Wind Tunnel Experiment 14 CHAPTER III DATA ANALYSIS METHOD 16 3 . 1 Method of Hilbert Huang Transformation 16 3 . 2 Conditional Sampling Analysis 20 3 . 3 Particle Image Velocimetry (PIV) 23 3 . 4 Saddle and Node Points 24 CHAPTER IV THE RESULTS OF FLOW VISUALIZATION 26 4 . 1 The Results of Oil-film Visualization 26 4 . 2 The Results of Dye Visualization Obtained in Water Channel 28 4 . 3 The Results of PIV Experiment 30 4 . 4 The Results of Smoke Flow Visualization 32 4 . 5 The Brief Summary of Flow Visualization Results 33 CHAPTER V ANALYSIS OF THE WIND TUNNEL EXPERIMENTAL DATA 34 5 . 1 Cross-correlations of the Force Measurement Data 34 5 . 2 Characteristics of The Four Flow Patterns Defined 35 5 . 3 Characteristics of Karman-type Vortex Shedding 38 CHAPTER VI CONCLUSIONS AND SUGGESTIONS 43 6 . 1 Conclusions 43 6 . 2 Suggestions on Future Investigation 45 References 46 PUBLICATION LIST 105

    References
    [1] Adaramola, M. S., Akinlade, O. G., Sumner, D., Bergstrom, D. J., and Shenstead, A. J., “Turbulent Wake of a Finite Circular Cylinder of Small Aspect ratio,” Journal of Fluids and Structures, Vol. 22, 2006, pp. 919-928.
    [2] Akins, R. E., and Rinhold, T. A. “Laser Doppler Velocimeter Measurements of Separated Shear Layer on Bluff Bodies”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 75, 1998, pp. 455-461.
    [3] Antonia, R. A., “Conditional Sampling in Turbulence Measurement.” Annual Review of Fluid Mech., vol. 13, 1981, pp. 131-156.
    [4] Baban, F., and So, R. M. C., “Aspect Ratio Effect on Flow-Induced Forces on Circular Cylinders in a Cross-Flow,” Experiments in Fluids, Vol. 10, 1991, pp. 313-321.
    [5] Baban, F., and So, R. M. C., “Recirculating Flow Behind and Unsteady Forces on Finite-Span Circular Cylinders in a Cross-Flow,” Journal of Fluids and Structures, Vol. 5, 1991, pp. 185-206.
    [6] Baban, F., So, R. M. C., and Otugen, M. V., “Unsteady Forces on Circular Cylinders in a Cross-Flow,” Experiments in Fluids, Vol. 7, 1989, pp. 293-302.
    [7] Banks, D., Meroney, R. N. Sarkar, P.P., Zhao, Z., and Wu, F., “Flow Visualization of Conical vortices on Flat roof with simultaneous surface pressure measure,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 84, 2000, pp. 65-85.
    [8] Bao, F., Miau, J. J., and Chen, T. Z., “PIV Technique and its Application in Fluid Measurement.” Journal of Aeronautics, Astronautics, series B, Vol. 39, 2007, pp. 93-98.
    [9] Bao, F., Miau, J. J., Lin, C., Hsieh, S. C., and Lin, W. J, “Complex near-wake flow of limited and ventilated cylinders,” Proceedings of the 9th Asian Symposium on Visualization, Hong Kong, 2007.
    [10] Bendat, J. S. and Piersol. A. G. Random Data Analysis and Measurement Procedures, 2nd ed. John Wiley & Sons, 1991
    [11] Bogrd, D. G. and Tiederman, W. G.. “Characteristics of Ejections in Turbulence Flow.” J. of Fluid Mech.,, 1987, pp. 1-19.
    [12] Bruun, H. H., “Hot Wire Anemometry : Principles and Signal Analysis.” Measurement Science and Technology, vol. 7, 1996, pp. 1210-1229.
    [13] Castro, I.P., and Robin, A. G. “The Flow Around a surfaced-mounted cube in uniform and turbulent Stream ,” Journal of fluid Mechanics, Vol. 79, 1977, pp. 307-335.
    [14] Depardon, S., Lasserre, J. J., Boueilh, J. C., Brizzi, L. E. and Boree, J., “Skin Friction Pattern Analysis Using Near-wall PIV,” Experiments in Fluids, Vol. 39, 2005, pp. 805-818.
    [15] Driver, D. M., “Application of Oil-Film Interferometer Skin-friction Measurement to Large wind Tunnel,” Experiments in Fluids, Vol. 34, 2003, pp. 717-725.
    [16] Etzold, F. and Fiedler, H., “The near-wake structure of a cantilevered cylinder in cross flow, ” Z. Flugwiss. Vol. 24, 1976, pp. 77-82
    [17] Farivar, D., “Turbulent Uniform Flow around Cylinders of Finite Length,” AIAA Journal, Vol. 19, No. 3, 1981, pp. 275-281.
    [18] Foss, J. F., “Surface Selections and Topological Constraint Evaluation for Flow Field Analysis,” Experiments in Fluids, Vol. 37, 2004, pp. 883-898.
    [19] Fotiadi, A. K., Lohou, F, Druilhet, A., Brunet, Y., and Delmas, R., “Methodological Development of the Conditional Sampling Method, Part 1 : Sensitivity to Statistical and Technical Characteristics.” Boundary-Layer Meteorology, Vol. 114, 2005, pp. 615-640.
    [20] Fox, T. A., and Apelt C. J., “Fluid-Induced Loading of Cantilevered Circular Cylinders in a Low-Turbulence Uniform Flow. Part 3: Fluctuating Loads with aspect ratios 4 to 25,” Journal of Fluids and Structures, Vol. 7, 1993, pp. 375-386.
    [21] Fox, T. A., and West, G. S., “Fluid-Induced Loading of Cantilevered Circular Cylinders in a Low-Turbulence Uniform Flow. Part 1: Mean Loading with Aspect Ratios in the Range 4 to 30,” Journal of Fluids and Structures, Vol. 7, 1993, pp. 1-14.
    [22] Fox, T. A., and West, G. S., “Fluid-Induced Loading of Cantilevered Circular Cylinders in a Low-Turbulence Uniform Flow. Part 2: Fluctuating Load on a Cantilever of aspect ratio 30,” Journal of Fluids and Structures, Vol. 7, 1993, pp. 15-28.
    [23] Frederich, O., Wassen, E., and Thiele, F., “Prediction of the Flow Around a Short Wall-Mounted Finite Cylinder using LES and DES,” Journal of Numerical Analysis, Industrial and Applied Mathematics, Vol. 3, No. 3-4, 2008, pp. 231-247.
    [24] Helman, J. L. and Hesselink, L., “Visualizing Vector Field Topology in Fluid Flows,” IEEE Computer Graphics and Applications, Vol. 11, 1991, pp. 36-46.
    [25] Holmes JD. Wind loading of structures. E&FN Spon, 2001.
    [26] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H., “The Empirical Mode Decomposition and the Hilbert Spectrum of Nonlinear and Non-Stationary Time Series Analysis,” Proc. R. Soc. Lond., Vol. A454, 1998, pp. 903-995.
    [27] Hunt, J.C.R., Abell, C. J., Peterka, J. E., and Woo H. G. C., “Kinematical Studies of the Flows Around Free or Surface Mounted Obstacles: Applying Topology to Flow Visualization,” Journal of fluid Mechanics, Vol. 86, 1978, pp. 307-335.
    [28] Hussein, H.J., and Martinuzzi, R.J., “Energy balance of turbulent flow around a surface mounted cube placed in a channel, ” Phys. Fluids, 1996, pp. 764-780.
    [29] Kawamura, T., Hiwada, M., Hibino, T., Mabuchi, I., and Kumada, M., “Flow around a finite circular cylinder on a flat plate, ” Bull. of JSME., vol.27, 1984, pp.2142-2151.
    [30] Lee, B. E., “The Effect of Turbulence on the Surface Pressure Field of A square Prism.” J. Fluid Mech., 1975, pp. 263-282.
    [31] Lee, H. H., and Miau, J. J., “Investigation on the Vortex Shedding from a Finite Height Cylinder,” The 5th International Symposium on Advanced Science and Technology in Experimental Mechanics, Ryukoku University, Omiya Campus, Kyoto, Japan, November 4-7, 2010.
    [32] Liang SG, Liu SC, Li QS, Zhang LL, and Gu M. “Mathematical model of acrosswind dynamic loads on rectangular tall buildings. ” Journal of Wind Engineering and Industrial Aerodynamics, vol.90 2002, pp.1757–70.
    [33] Lin, C., Chang, S. C., Ho, T. C., and Chang, K. A, “Laboratory observation of a solitary wave propagating over a submerged rectangular dike,” Journal of Engineering Mechanics, ASCE, vol.132, 2006, pp.545-554.
    [34] Liu, Y., So, R. M. C., and Cui, Z. X. “A Finite Cantilevered Cylinder in a Cross-Flow,” Journal of Fluids and Structures, Vol. 20, 2005, pp. 589-609.
    [35] Matinuzzi, R. and Tropea, C., “The flow around a surface-mounted prismatic obstacles placed in a fully developed channel flow, ” J. Fluid Eng., 115, 1993, 85-92.
    [36] Miau, J. J., and Karlsson, S. K. F., “Flow Structure in the Developing Region of a Symmetric Wake and an Unsymmetric Wake.” Physics of Fluids, Vol. 30(8), 1987, pp. 2389-2399.
    [37] Miau, J. J., Bao, F., Lee, H. H. and Lin, C., “Flow structures in the free end region of a finite square cylinder.” The 9th International Symposium on Visualization, Hong-Kong, June 4-8, 2007.
    [38] Miau, J. J., Chou, J. H., Cheng, C. M., Chu, C. R., Woo, K. C., Ren, S. K., Chen, E. L., Hu, C. C., and Chen, J. L., (2004), “Design Aspects of the ABRI Wind Tunnel,” presented at The International Wind Engineering Symposium, IWES 2003, November 17-18, 2003, Tamsui, Taipei County, Taiwan.
    [39] Miau, J.J., Wang, J.T., Chou, J.H., and Wei, C. Y. “Low-frequency Fluctuations in the Near-wake Region of a Trapezoidal cylinder with low aspect ratio.” Journal of Fluids and Structures, Vol. 17, 2003, pp. 701-715.
    [40] Mola, A., Bordonaro, G., and Hajj, M., “Low-frequency Variations of Force Coefficients on Square Cylinders with Sharp and Rounded Corners.” Journal of Structural Engineering, Vol. 135, 2009, pp. 828-835.
    [41] Nakamura, Y., and Ozono, S., “The Effects of Turbulence on a Separated and Reattaching Flow. ” J. Fluid Mech., 1987, pp. 477-490.
    [42] Okamoto, K. and Sunabashiri, Y., “Vortex shedding from a circular cylinder of finite length placed on a ground plane. ” JSME Int. J. Ser. II. 114, 1992, pp. 512-521.
    [43] Okamoto, S., and Sunabashiri, Y., “Vortex Shedding From a Circular Cylinder of Finite Length Placed on a Ground Plate,” Journal of Fluids Engineering, Vol. 114, 1992, pp. 512-521.
    [44] Okamoto, T., and Yagita, M., “The Experimental Investigation on the Flow Past a Circular Cylinder of Finite Length Placed Normal to the Plane Surface in a Uniform Stream,” Bulletin of JSME, Vol. 16, No. 95, 1973, pp. 805-814.
    [45] Park, C. C., and Lee, S. J., “Effects of Free-end Corner Shape on Flow Structure Around a Finite Cylinder,” Journal of Fluid and Structure, Vol. 19, 2004, pp. 141-158.
    [46] Park, C. C., and Lee, S. J., “Free End Effects on the Near Wake Flow Structure Behind a Finite Circular Cylinder,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 88, 2000, pp. 231-246.
    [47] Raffel, M., Willert, C., Kompenhans, J. Particle image velocimetry : Heidelberg ;Springer,c2007.New York.
    [48] Roh, S. C., & Park, S. O., “Vortical Flow over the Free End Surface of a Finite Circular Cylinder Mounted on a Flat Plate,” Experiments in Fluids, Vol. 34, 2003, pp. 63-67.
    [49] Roshko, A., “Perspectives on Bluff Body Aerodynamics.” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 49, 1993, pp. 79-100.
    [50] Sakamoto, H. and Arie, M.,“Vortex shedding from A Rectangular Prism and A Circular Cylinder Placed Vertically in A Turbulent boundary Layer.” Journal of Fluid Mechanics, Vol. 126, 1983, pp. 147-165.
    [51] Sumner, D., Heseltine, J. L., and Dansereau, O. J. P., “ Wake Structure of a Finite Circular Cylinder of Small Aspect Ratio,” Experiments in Fluids, Vol.37, 2004, pp. 720-730.
    [52] Tallin A, and Ellingwood B. “Serviceability limit states: wind induced vibrations. ” ASCE Journal of Structure Engineering, 1984, pp. 2424–2437.
    [53] Tamura, T., and Miyagi, T., “The Effect of Turbulence on Aerodynamic Forces on a Square Cylinder with Various Corner Shapes.” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 83, 1999, pp. 135-145
    [54] Tamura, T., Miyagi, T., and Kitagishi, S “Numerical Prediction of Unsteady pressures on a square cylinder with various shapes.” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 74, 1998, pp. 531-542.
    [55] Thomas, C., Martin, J. G., Goeckede, M., Siqueria, M. B., Foken, T., Law, B. E., Loesher, H. W., and Katual, G., “Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series.” Agricultural and Forest Meteorology, vol. 148, 2008, pp. 1210-1229.
    [56] Vickery, B. J., “Load Fluctuation in Turbulent Flow.” Journal of the Engineering Mechanics Division, Proceedings of ASCE, Vol. 94, 1968, 31-46.
    [57] Wang, H. F., Zhou, Y., Chan, C. K., and Lam K. S., “Effect of Initial Conditions on Interaction Between a boundary Layer and a Wall-mounted Finite –length-cylinder Wake,” Physics of Fluid, Vol.18, 2006, 065106
    [58] Wang, J. M., Bi, W. T., and Wei, W. D., “Effects of an Upstream Inclined Rod on the Circular Cylinder-flat Plate Junction Flow,” Experiments in Fluids, Vol. 46, 2009, pp. 1093-1104.
    [59] Wang, J.M., and Wei, Q. D., 2007, “Structure and control of Flow past Cylinder-Plate Junction,” Flow structures in the free end region of a finite square cylinder. The 9th International Symposium on Visualization, Hong-Kong, June 4-8, 2007
    [60] Westerweel, J., and Draad, A. A. Th. Van der Hoeven, J. G., van Oord, J., “Measurement of Full-developed Turbulence Pipe flow with digital particle image velocimetry,” Exp.in Fluids, vol.20, 1996, pp.165-177.
    [61] Yakhot, A., Anor, T., Liu, H. and Nikitin N., “Direct Numerical Simulation of Turbulent Flow Around a Wall-mounted Cube: Spatio-Temporal Evolution of Large-Scale Vortices.” Journal of Fluid Mechanics, Vol. 556, 2006, pp. 1-9.
    [62] Zdravkovich, M.M., and Brand, V.P., Mathew, G. & Weston, A, “Flow Past Short Circular Cylinders with two free ends.” J. Fluid Mech., 1989, pp. 557-575.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE