簡易檢索 / 詳目顯示

研究生: 楊士賢
Yang, Shih-Xian
論文名稱: 無共享座標系的多體非局域性
Multipartite Bell-inequality violation using randomly chosen triads
指導教授: 梁永成
Liang, Yeong-Cherng,
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 30
中文關鍵詞: 貝爾不等式多體相關性隨機量測
外文關鍵詞: Bell Inequality, Multipartite Correlation, Random Measurements
相關次數: 點閱:79下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究多體的糾纏態 (Greenberger-Horne-Zeilinger state, GHZ) 在隨機選取量測的情況下違反貝爾不等式 (Bell inequality) 的機率。受之前研究二體的相關工作啟發,我們關注如下的貝爾情境 (Bell scenario):在情境中的每一個參與者 (party) 會從三個互不偏差的量測基底 (mutually unbiased bases) 中選擇兩個作為他們的量測。而每個參與者的三個基底都是隨機且均勻的選。在這樣的情況下探討能不能夠違反貝爾不等式。我們的數值計算結果顯示在四體以上的情況,我們都可以找到一組量測(每個參與者三選二為一組)違反貝爾不等式(除了零測度集外,a set of measure zero)。
    並且對白噪音 (white noise) 的忍受度高,這暗示了原則上在一個貝爾實驗中,可以不用建立共享座標系也能有非局域的特性。

    We consider the problem of demonstrating non-Bell-local correlations by performing local measurements in randomly chosen bases on a multipartite Greenberger-Horne-Zeilinger
    state. Inspired by previous work in the bipartite scenario, we consider specifically the case where each party performs measurements on bases that form a triad on the Bloch sphere.
    As with the bipartite scenario, our numerical results for the tripartite, 4-partite, 5-partite and 6-partite scenario suggest that if each triad is randomly, but uniformly chosen according to the Haar measure, one always (except possibly for a set of measure zero) finds correlations that violate a Bell inequality. In addition, these quantum violations of a Bell inequality appear to be fairly resistant to white noise, indicating that such a demonstration can in principle be performed in an experimental situation without sharing a global reference frame.

    Table of Contents 摘要 i Abstract ii Acknowledgments iii Table of Contents iv List of Tables v List of Figures vi Nomenclature vii Chapter 1 Introduction 1 1.1 The Need of Shared Reference Frame . . . . . 2 Chapter 2 Preliminary 6 2.1 Probability of Violation . . . . . . . . . . 6 2.2 Concept of Probability Space . . . . . . . . 8 2.3 k-producibility . . .. . . . . . . . . . . . 9 Chapter 3 Probability of Violation of Bell Inequalities 10 3.1 Results of Probability of Violation from Mermin inequality . . . . . . . . . . . . . . 13 3.2 Results of Probability of Violation from Bell inequality in Tripartite Scenario . . . . 17 3.3 Results of Probability of Violation from 7 th Sliwa and FG . . . . . . . . . . 17 Chapter 4 Robustness of the Scenario 20 4.1 Visibility . . . . . . . . . . . . . . . . 20 4.2 Results of Visibility from Linear Programming . . . . . . . . . . . . . . . . . 20 Chapter 5 Related Work 23 Chapter 6 Conclusion 27 References 28 Appendix A Mermin inequalities 30

    [1] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theoretical Computer Science, vol. 560, pp. 7 – 11, 2014. Theoretical
    Aspects of Quantum Cryptography– celebrating 30 years of BB84.
    [2] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett., vol. 23, pp. 880–884, Oct 1969.
    [3] Y.-C. Liang et al., “Nonclassical correlations from randomly chosen local measurements,” Phys. Rev. Lett., vol. 104, p. 050401, Feb 2010.
    [4] J. J. Wallman, Y.-C. Liang, and S. D. Bartlett, “Generating nonclassical correlations without fully aligning measurements,” Phys. Rev. A, vol. 83, p. 022110, Feb 2011.
    [5] J. J. Wallman and S. D. Bartlett, “Observers can always generate nonlocal correlations without aligning measurements by covering all their bases,” Phys. Rev. A, vol. 85, p. 024101, Feb 2012.
    [6] A. de Rosier, J. Gruca, F. Parisio, T. Vértesi, and W. Laskowski, “Multipartite nonlocality and random measurements,” Phys. Rev. A, vol. 96, p. 012101, Jul 2017.
    [7] A. Fonseca, A. de Rosier, T. Vértesi, W. Laskowski, and F. Parisio, “Survey on the bell nonlocality of a pair of entangled qudits,” Phys. Rev. A, vol. 98, p. 042105, Oct 2018.
    [8] P. Shadbolt et al., “Guaranteed violation of a bell inequality without aligned reference frames or calibrated devices,” Scientific Reports, vol. 2, p. 470, Jun 2012.
    [9] N. D. Mermin, “Extreme quantum entanglement in a superposition of macroscopically distinct states,” Phys. Rev. Lett., vol. 65, pp. 1838–1840, Oct 1990.
    [10] S. M. Roy and V. Singh, “Tests of signal locality and einstein-bell locality for multiparticle systems,” Phys. Rev. Lett., vol. 67, pp. 2761–2764, Nov 1991.
    [11] M. Ardehali, “Bell inequalities with a magnitude of violation that grows exponentially with the number of particles,” Phys. Rev. A, vol. 46, pp. 5375–5378, Nov 1992.
    [12] A. V. Belinskiĭ and D. N. Klyshko, “Interference of light and bell’s theorem,” Physics-Uspekhi, vol. 36, pp. 653–693, aug 1993.
    [13] Y.-C. Liang, D. Rosset, J.-D. Bancal, G. Pütz, T. J. Barnea, and N. Gisin, “Family of bell-like inequalities as device-independent witnesses for entanglement depth,” Phys.
    Rev. Lett., vol. 114, p. 190401, May 2015.
    [14] C. Śliwa, “Symmetries of the bell correlation inequalities,” Physics Letters A, vol. 317, no. 3, pp. 165 – 168, 2003.
    [15] J. Vallins, A. B. Sainz, and Y.-C. Liang, “Almost-quantum correlations and their refinements in a tripartite bell scenario,” Phys. Rev. A, vol. 95, p. 022111, Feb 2017.
    [16] A. Aspect, “Bell’s theorem : The naive view of an experimentalist,” arXiv, no. 0402001, 2004.
    [17] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information:
    10th Anniversary Edition. Cambridge University Press, 2011.
    [18] M. Garrity, “Fill Between.” https://blogs.mathworks.com/graphics/2015/10/13/fillbetween/.
    [19] J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics, vol. 1, no. 3, pp. 195–200, 1964.
    [20] S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, “Device-independent quantum key distribution secure against collective attacks,” New Journal of Physics, vol. 11, p. 045021, apr 2009.
    [21] T. Cubitt, “Random unitary.” http://www.dr-qubit.org/matlab/randU.m.
    [22] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys., vol. 86, pp. 419–478, Apr 2014.
    [23] J. J. Wallman, Y.-C. Liang, and S. D. Bartlett, “Generating nonclassical correlations without fully aligning measurements,” Phys. Rev. A, vol. 83, p. 022110, Feb 2011.
    [24] J. Vallins et al., “Almost-quantum correlations and their refinements in a tripartite bell scenario,” Phys. Rev. A, vol. 95, p. 022111, Feb 2017.
    [25] P.-S. Lin, J.-C. Hung, C.-H. Chen, and Y.-C. Liang, “Exploring bell inequalities for the device-independent certification of multipartite entanglement depth,” Phys. Rev. A, vol. 99, p. 062338, Jun 2019.
    [26] C. Furkan Senel et al., “Demonstrating genuine multipartite entanglement and nonseparability without shared reference frames,” Phys. Rev. A, vol. 91, p. 052118, May 2015.
    [27] G. N. Tabia, “Verify tripartite and 4-partite scenario.” private communication.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE