簡易檢索 / 詳目顯示

研究生: 李柏蒼
Lee, Po-Tsang
論文名稱: 分離自成鼠之腎臟幹細胞可以加速腎臟再生
Progenitor Cells Derived from Adult Mouse Kidney Mesenchyme Accelerate Renal Regeneration after Ischemic Injury
指導教授: 湯銘哲
Tang, Ming-Jer
共同指導教授: Norimoto Yanagawa
Norimoto Yanagawa
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 100
中文關鍵詞: 腎臟幹細胞腎衰竭再生急性腎小管壞死腎小管上皮細胞
外文關鍵詞: Kidney progenitor cells, Renal failure, Regeneration, Acute tubular necrosis, Tubular epithelial cells
相關次數: 點閱:87下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在臺灣末期腎病變接受長期透析病人的發生率及盛行率一直高居世界前兩名。然而目前對於慢性尿毒症的治療只有血液透析、腹膜透析以及腎臟移植。受限於器官之短缺,大多數病人只能靠長期透析維持生命。找尋讓受傷的腎臟恢復功能甚至再生腎臟一直是迫切解決的課題。隨著其他器官幹細胞的發現以及對幹細胞特性,包括幫助受損器官修補之潛能的了解,運用幹細胞於治療腎衰竭是一新的策略。有別於單一藥物的治療,幹細胞可於受傷組織分泌細胞激素、改善血管功能或直接分化為需要的細胞來幫忙腎臟再生。在囓齒動物骨髓間質幹細胞可以藉由旁泌素作用改善腎衰竭,而腎臟幹細胞在腎衰竭再生過程中所扮演的角色仍不清楚。
    急性腎小管壞死是臨床上最典型的急性腎衰竭模式。在觀察急性腎小管壞死後的再生過程中,藉由組織染色之分析發現正常腎臟組織中腎小管上皮細胞不會表現vimentin,只有間質細胞會表現vimentin。在急性腎臟傷害12小時後,圍繞在受損的腎小管上皮細胞周圍的間質細胞有明顯增生現象且都表現vimentin。第2~4天隨著腎小管上皮細胞的再生,除了間質vimentin陽性細胞增生外,再生扁平的腎小管上皮也同時出現vimentin染色陽性細胞。之後當腎小管上皮細胞完成修補後便不再表現vimentin。由此推論在急性腎衰竭後,腎臟間質細胞可能直接參與腎小管上皮細胞的再生。進一步檢視已知間質細胞的標記發現在急性腎臟傷害1天內只有少數細胞是纖維細胞或血管內皮細胞,多數仍是未知的細胞。臆測腎臟幹細胞可能就在這些細胞中。
    另外,在急性腎臟傷害之前給予一次BrdU注射以作為追蹤間質細胞的標記。經過急性腎臟衰竭後藉由組織染色發現﹕第12小時85% BrdU染色陽性細胞存在腎臟間質。隨著腎小管上皮細胞的再生,第2~4天BrdU染色陽性細胞也跟著出現在腎小管中,到第4天高達75% BrdU染色陽性細胞出現在腎小管。進一步由ELISA檢測腎臟組織證實經過一次BrdU注射後腎臟BrdU含量在1天達巔峰,之後含量漸減至3天達定值,並穩定持續到7天。由此動物實驗模式證明急性腎衰竭後,腎臟BrdU存留細胞可能由間質移到腎小管,推論腎臟間質細胞可能直接參與腎小管上皮細胞的再生。
    我們使用Myh9螢光轉殖鼠,經由適當的過濾篩選、螢光細胞的煉選以及持續的細胞繼代培養,成功得到發螢光的腎臟幹細胞。其基因表現有別於骨髓間質幹細胞,且這些細胞具有下列特性:經過數十代的培養仍無老化現象,表現幹細胞及腎臟幹細胞的標記如Oct4、Nanog、Pax2、Wnt-4、WT-1,但並不表現CD34、Sca-1、CD45、E-cadherin、vWF等細胞標記以及可分化為血管內皮細胞、成骨細胞及腎小管上皮細胞。藉由Oct4及綠螢光的雙免疫組織染色確認腎臟幹細胞分離自腎髓質及乳突之間質部。在急性缺血性腎衰竭後,藉著注射腎臟幹細胞到腎臟內,可以降低血中尖峰尿素氮值,栓塞區域以及壞死傷害。受傷七天後,腎臟幹細胞可形成血管及腎小管上皮細胞。此外注射腎臟幹細胞治療也可以減少急性缺血性腎衰竭造成的死亡率。本研究顯示我們驗證了成鼠腎臟間質中存在腎臟幹細胞,且在急性腎衰竭中,腎臟幹細胞有助於腎臟的修補並可延長老鼠的存活。運用腎臟幹細胞我們不僅開啟治療腎臟衰竭之另一扇窗,以此研究為基石我們將可進一步探討並了解腎臟幹細胞在急性腎衰竭再生過程中所扮演的角色及功能並進一步闡明幹細胞參與組織再生之機轉。

    In Taiwan, the incidence of end-stage renal disease ranked first and the prevalence ranked second in the world. Patients with end-stage renal disease need hemodialysis, peritoneal dialysis or kidney transplant to maintain their life. For the shortage of available organ, most of the patients are under regular dialysis. To accelerate renal repair or even make a functioning kidney is the emergent issue to be solved and interesting topic for research. Following the discovery of tissue-specific progenitor cells in other organs and their ability to improve regeneration after injury, progenitor cell-based therapy is a new strategy in the treatment of acute kidney injury and has potentially more value than single-agent drug therapy due to the highly versatile response of cells to their environment. These cells may not only secrete cytokines within the injured kidney, but also participate in tubular cell proliferation or angiogenesis to facilitate renal regeneration. In rodents, increasing evidence suggests that the therapeutic potential of mesenchymal stem cells derived from bone marrow could be beneficial in the kidney injury. Thereby, we hypothesize that kidney progenitor cells may accelerate renal regeneration after injury.
    We first observed the regenerative process of acute tubular necrosis in rodents. In the normal kidney, only interstitial cells but not tubular cells expressed vimentin. Following acute renal failure, vimentin-positive renal interstitial cells proliferated and surrounded the damaged renal tubules as early as 12 hours after injury. Within the regenerating tubules, vimentin staining was found intensely two days after injury, and disappeared after full recovery of tubular epithelial cells. By known interstitial cell markers, only few vimentin-positive renal interstitial cells were characterized as endothelial cells or fibroblasts one day after acute renal failure. Most of the other proliferating cells were not specified and we hypothesize that kidney progenitor cells could reside in these areas.
    Using bromodeoxyuridine (BrdU) as a marker of proliferating cells, we monitor the distribution of the interstitial cells by immunohistochemistry during acute renal failure. Following one injection of BrdU, eighty five percent of BrdU labeling cells located in the interstitium 12 hours after acute renal failure and the count decreased to 25% at the 4th day. Interestingly, BrdU labeling cells redistributed to the regenerating tubules at the 1st and 4th day. Seventy-five percentage of BrdU labeling cells located in the tubules at the 4th day. As assessed by ELISA, the uptake of BrdU in the kidney peaked at the 1st day, decreased to constant level after 3 days, and maintained till 7 days following one injection of BrdU before acute renal failure. These results indicate that interstitial cells might be engaged in the process of tubular regeneration after acute renal failure.
    We test the hypothesis that renal progenitor cells isolated from adult mouse kidney accelerate renal regeneration via participation in the repair process. A unique population of cells exhibiting characteristics consistent with renal progenitor cells, mouse kidney progenitor cells (MKPC), was isolated from Myh9 targeted mutant mice. Features of these cells include: (1) spindle-shaped morphology, (2) self-renewal of more than 100 passages without evidence of senescence, (3) expression of Oct-4, Pax-2, Wnt-4, WT-1, vimentin, alpha-smooth muscle actin, CD29 and S100A4 but no SSEA-1, c-kit, or other markers of more differentiated cells. MKPC exhibit plasticity as demonstrated by the ability to differentiate into endothelial cells and osteoblasts in vitro and endothelial cells and tubular epithelial cells in vivo. The origin of the isolated MKPC was from the interstitium of medulla and papilla. Importantly, intra-renal injection of MKPC in mice with ischemic injury rescued renal damage, as manifested by decreases in peak serum urea nitrogen, the infarct zone and the necrotic injury. Seven days after the injury, some MKPC formed vessels with red blood cells inside and some incorporated into renal tubules. In addition, MKPC treatment reduces the mortality in mice after ischemic injury. Our results indicate that MKPC represent a multipotent adult progenitor cell population, which may contribute to the renal repair and prolong survival after ischemic injury. The PhD study not only raised a novel method to treat acute renal failure but also open a new window to elucidate the relationship between kidney progenitor cells and tubular regeneration. Based on these, we will be able to unveil the mechanism of how tissue-specific progenitor cells involve in the process of tissue regeneration.

    Contents Abstract in English ---------------------------------- 1 Abstract in Chinese ---------------------------------- 4 Acknowledgement -------------------------------------- 6 Contents --------------------------------------------- 8 Figure and Table Contents --------------------------- 10 Abbreviations --------------------------------------- 11 Chapter 1 Introduction -------------------------------12 1.1. Stem Cells-----------------------------------12 1.1.1. Characteristics ----------------------12 1.1.2. Embryonic Stem Cells -----------------13 1.1.3. Adult Stem Cells ---------------------14 1.1.4. Bone Marrow-derived Stem Cell---------16 1.1.5. Renal Stem Cells ---------------------17 1.1.6. Induced Pluripotent Stem Cells -------19 1.2. Acute Kidney Injury -------------------------20 1.2.1. Clinical Impact of Acute Kidney Injury20 1.2.2. Pathogenesis of Acute Kidney Injury --21 1.2.3. Regeneration of Acute Kidney Injury --22 1.2.4. Transdifferentiation, Kidney Development and Renal Regeneration ---------------23 1.3. Stem Cells-based Therapy in Acute Kidney Injury --------------------------------------26 1.3.1. Embryonic Stem Cells in Renal Regeneration -------------------------26 1.3.2. Bone Marrow-derived Stem Cells in Renal Regeneration -------------------------27 1.3.3. Renal Stem Cells in Renal Regeneration --------------------------------------29 1.4. Myh9 Targeted Mutant Mouse ------------------31 1.5. Objective of Study --------------------------32 Chapter 2 Materials and Methods ----------------------33 2.1. Murine Model of Acute Renal Failure ---------33 2.2. BrdU Labeling and Pharmacokinetics ----------33 2.3. Generation of Myh9 Targeted Mutant Mice and Breeding Scheme -----------------------------34 2.4. Isolation of Mouse Kidney Progenitor Cells(MKPC) ---------------------------------------------35 2.5. Immunocytochemistry of MKPC -----------------36 2.6. RT-PCR --------------------------------------37 2.7. In Vitro Differentiation --------------------38 2.8. Telomerase Activity -------------------------38 2.9. In Vivo Differentiation ---------------------39 2.10.Effect of MKPC on Renal Rescue after Ischemia- reperfusion Injury --------------------------40 2.11.Immunohistochemistry ------------------------41 Chapter 3 Results ------------------------------------42 3.1. Establishment of Acute Renal Failure Model in Murine --------------------------------------42 3.2. Vimentin Expression in Normal Kidney and after Acute Renal Failure -------------------------42 3.3. BrdU Labeling Interstitial Cells Migrate into Tubules after Acute Renal Failure -----------43 3.4. Generation of Myh9 Targeted Mutant Mice and Expression of GFP ---------------------------44 3.5. Isolation of Fluorescent MKPC ---------------45 3.6. MKPC Express Renal Progenitor Cell Markers --45 3.7. Differentiation of MKPC into Endothelial, Osteoblastic and Tubular Epithelial Lineages-46 3.8. The Niche of MKPC Is in the Interstitium of Medulla -------------------------------------47 3.9. MKPC Decreases Infarct Zone, and Preserves Renal Function in Mice with Ischemic Renal Injury -48 3.10.Transplanted MKPC Differentiated into Endothelial Cells and Tubular Cells after Ischemic Injury -----------------------------49 3.11.MKPC Ameliorates Mortality of Mice with Acute Kidney Injury -------------------------------50 Chapter 4 Discussion and Prospects -------------------51 References -------------------------------------------57 Figures ----------------------------------------------73 Appendix ---------------------------------------------94 Curriculum Vitae -------------------------------------95

    Abbate, M., Bonventre, J.V., and Brown, D. (1994). The microtubule network of renal epithelial cells is disrupted by ischemia and reperfusion. Am J Physiol 267, F971-978.
    Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., Amit, M., Andrews, P.W., Beighton, G., Bello, P.A., Benvenisty, N., Berry, L.S., Bevan, S., et al. (2007). Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnol 25, 803-816.
    Alvarez-Buylla, A., and Lim, D.A. (2004). For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683-686.
    Anjos-Afonso, F., Siapati, E.K., and Bonnet, D. (2004). In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 117, 5655-5664.
    Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., and Isner, J.M. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964-967.
    Aumailley, M., and Gayraud, B. (1998). Structure and biological activity of the extracellular matrix. J Mol Med 76, 253-265.
    Basile, D.P. (2004). Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Curr Opin Nephrol Hypertens 13, 1-7.
    Basile, D.P. (2007). The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72, 151-156.
    Bi, B., Schmitt, R., Israilova, M., Nishio, H., and Cantley, L.G. (2007). Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18, 2486-2496.
    Bonventre, J.V. (2007). Pathophysiology of acute kidney injury: roles of potential inhibitors of inflammation. Contrib Nephrol 156, 39-46.
    Brezis, M., Heyman, S.N., Dinour, D., Epstein, F.H., and Rosen, S. (1991). Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys. J Clin Invest 88, 390-395.
    Brodsky, S.V., Yamamoto, T., Tada, T., Kim, B., Chen, J., Kajiya, F., and Goligorsky, M.S. (2002). Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 282, F1140-1149.
    Bruno, S., Bussolati, B., Grange, C., Collino, F., di Cantogno, L.V., Herrera, M.B., Biancone, L., Tetta, C., Segoloni, G., and Camussi, G. (2009a). Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells Dev 18, 867-880.
    Bruno, S., Grange, C., Deregibus, M.C., Calogero, R.A., Saviozzi, S., Collino, F., Morando, L., Busca, A., Falda, M., Bussolati, B., et al. (2009b). Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20, 1053-1067.
    Bussolati, B., Bruno, S., Grange, C., Buttiglieri, S., Deregibus, M.C., Cantino, D., and Camussi, G. (2005). Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166, 545-555.
    Bussolati, B., Hauser, P.V., Carvalhosa, R., and Camussi, G. (2009). Contribution of stem cells to kidney repair. Curr Stem Cell Res Ther 4, 2-8.
    Byrne, J.A., Simonsson, S., Western, P.S., and Gurdon, J.B. (2003). Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr Biol 13, 1206-1213.
    Cai, C.L., Liang, X., Shi, Y., Chu, P.H., Pfaff, S.L., Chen, J., and Evans, S. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5, 877-889.
    Challen, G.A., Bertoncello, I., Deane, J.A., Ricardo, S.D., and Little, M.H. (2006). Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity. J Am Soc Nephrol 17, 1896-1912.
    Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643-655.
    Chan, L., Chittinandana, A., Shapiro, J.I., Shanley, P.F., and Schrier, R.W. (1994). Effect of an endothelin-receptor antagonist on ischemic acute renal failure. Am J Physiol 266, F135-138.
    Chen, J., Park, H.C., Addabbo, F., Ni, J., Pelger, E., Li, H., Plotkin, M., and Goligorsky, M.S. (2008). Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int 74, 879-889.
    Cho, K.J., Trzaska, K.A., Greco, S.J., McArdle, J., Wang, F.S., Ye, J.H., and Rameshwar, P. (2005). Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1 alpha. Stem Cells 23, 383-391.
    Conger, J.D., Robinette, J.B., and Hammond, W.S. (1991). Differences in vascular reactivity in models of ischemic acute renal failure. Kidney Int 39, 1087-1097.
    Copelan, E.A. (2006). Hematopoietic stem-cell transplantation. N Engl J Med 354, 1813-1826.
    D'Apolito, M., Guarnieri, V., Boncristiano, M., Zelante, L., and Savoia, A. (2002). Cloning of the murine non-muscle myosin heavy chain IIA gene ortholog of human MYH9 responsible for May-Hegglin, Sebastian, Fechtner, and Epstein syndromes. Gene 286, 215-222.
    da Silva Meirelles, L., Chagastelles, P.C., and Nardi, N.B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119, 2204-2213.
    Day, R.M. (2006). Epithelial stem cells and tissue engineered intestine. Curr Stem Cell Res Ther 1, 113-120.
    Dekel, B., Zangi, L., Shezen, E., Reich-Zeliger, S., Eventov-Friedman, S., Katchman, H., Jacob-Hirsch, J., Amariglio, N., Rechavi, G., Margalit, R., et al. (2006). Isolation and characterization of nontubular sca-1+lin- multipotent stem/progenitor cells from adult mouse kidney. J Am Soc Nephrol 17, 3300-3314.
    Devine, S.M., Cobbs, C., Jennings, M., Bartholomew, A., and Hoffman, R. (2003). Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101, 2999-3001.
    Dressler, G. (2002). Tubulogenesis in the developing mammalian kidney. Trends Cell Biol 12, 390-395.
    Dressler, G.R. (2009). Advances in early kidney specification, development and patterning. Development 136, 3863-3874.
    Duffield, J.S., Park, K.M., Hsiao, L.L., Kelley, V.R., Scadden, D.T., Ichimura, T., and Bonventre, J.V. (2005). Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115, 1743-1755.
    Eddy, A.A. (1996). Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 7, 2495-2508.
    Erickson, A.C., and Couchman, J.R. (2000). Still more complexity in mammalian basement membranes. J Histochem Cytochem 48, 1291-1306.
    Fang, T.C., Alison, M.R., Cook, H.T., Jeffery, R., Wright, N.A., and Poulsom, R. (2005). Proliferation of bone marrow-derived cells contributes to regeneration after folic acid-induced acute tubular injury. J Am Soc Nephrol 16, 1723-1732.
    Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., and Mavilio, F. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528-1530.
    Fish, E.M., and Molitoris, B.A. (1994). Alterations in epithelial polarity and the pathogenesis of disease states. N Engl J Med 330, 1580-1588.
    Goligorsky, M.S., and DiBona, G.F. (1993). Pathogenetic role of Arg-Gly-Asp-recognizing integrins in acute renal failure. off. Proc Natl Acad Sci U S A 90, 5700-5704.
    Gupta, S., Verfaillie, C., Chmielewski, D., Kim, Y., and Rosenberg, M.E. (2002). A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int 62, 1285-1290.
    Gupta, S., Verfaillie, C., Chmielewski, D., Kren, S., Eidman, K., Connaire, J., Heremans, Y., Lund, T., Blackstad, M., Jiang, Y., et al. (2006). Isolation and characterization of kidney-derived stem cells. J Am Soc Nephrol 17, 3028-3040.
    Herrera, M.B., Bussolati, B., Bruno, S., Fonsato, V., Romanazzi, G.M., and Camussi, G. (2004). Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14, 1035-1041.
    Herrera, M.B., Bussolati, B., Bruno, S., Morando, L., Mauriello-Romanazzi, G., Sanavio, F., Stamenkovic, I., Biancone, L., and Camussi, G. (2007). Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 72, 430-441.
    Herzlinger, D., Koseki, C., Mikawa, T., and al-Awqati, Q. (1992). Metanephric mesenchyme contains multipotent stem cells whose fate is restricted after induction. Development 114, 565-572.
    Hishikawa, K., Marumo, T., Miura, S., Nakanishi, A., Matsuzaki, Y., Shibata, K., Ichiyanagi, T., Kohike, H., Komori, T., Takahashi, I., et al. (2005). Musculin/MyoR is expressed in kidney side population cells and can regulate their function. J Cell Biol 169, 921-928.
    Hiyama, E., and Hiyama, K. (2007). Telomere and telomerase in stem cells. Br J Cancer 96, 1020-1024.
    Huang, A.H., Chen, Y.K., Lin, L.M., Shieh, T.Y., and Chan, A.W. (2008). Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J Oral Pathol Med 37, 571-574.
    Humphreys, B.D., and Bonventre, J.V. (2007). The contribution of adult stem cells to renal repair. Nephrol Ther 3, 3-10.
    Humphreys, B.D., and Bonventre, J.V. (2008). Mesenchymal stem cells in acute kidney injury. Annu Rev Med 59, 311-325.
    Humphreys, B.D., Valerius, M.T., Kobayashi, A., Mugford, J.W., Soeung, S., Duffield, J.S., McMahon, A.P., and Bonventre, J.V. (2008). Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284-291.
    Izadyar, F., Spierenberg, G.T., Creemers, L.B., den Ouden, K., and de Rooij, D.G. (2002). Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 124, 85-94.
    Jablonski, P., Howden, B.O., Rae, D.A., Birrell, C.S., Marshall, V.C., and Tange, J. (1983). An experimental model for assessment of renal recovery from warm ischemia. Transplantation 35, 198-204.
    Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41-49.
    Jones, C.H., Richardson, D., Goutcher, E., Newstead, C.G., Will, E.J., Cohen, A.T., and Davison, A.M. (1998). Continuous venovenous high-flux dialysis in multiorgan failure: a 5-year single-center experience. Am J Kidney Dis 31, 227-233.
    Kale, S., Karihaloo, A., Clark, P.R., Kashgarian, M., Krause, D.S., and Cantley, L.G. (2003). Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112, 42-49.
    Kellerman, P.S., Clark, R.A., Hoilien, C.A., Linas, S.L., and Molitoris, B.A. (1990). Role of microfilaments in maintenance of proximal tubule structural and functional integrity. Am J Physiol 259, F279-285.
    Kerr, C.L., Hill, C.M., Blumenthal, P.D., and Gearhart, J.D. (2008). Expression of pluripotent stem cell markers in the human fetal ovary. Hum Reprod 23, 589-599.
    Kiel, M.J., Yilmaz, O.H., Iwashita, T., Yilmaz, O.H., Terhorst, C., and Morrison, S.J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109-1121.
    Kim, D., and Dressler, G.R. (2005). Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol 16, 3527-3534.
    Kinsey, G.R., Li, L., and Okusa, M.D. (2008). Inflammation in acute kidney injury. Nephron Exp Nephrol 109, e102-107.
    Kitamura, S., Yamasaki, Y., Kinomura, M., Sugaya, T., Sugiyama, H., Maeshima, Y., and Makino, H. (2005). Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J 19, 1789-1797.
    Kortesidis, A., Zannettino, A., Isenmann, S., Shi, S., Lapidot, T., and Gronthos, S. (2005). Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 105, 3793-3801.
    Koseki, C., Herzlinger, D., and al-Awqati, Q. (1992). Apoptosis in metanephric development. J Cell Biol 119, 1327-1333.
    Kreidberg, J.A., and Symons, J.M. (2000). Integrins in kidney development, function, and disease. Am J Physiol 279, F233-242.
    Kunter, U., Rong, S., Boor, P., Eitner, F., Muller-Newen, G., Djuric, Z., van Roeyen, C.R., Konieczny, A., Ostendorf, T., Villa, L., et al. (2007). Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. J Am Soc Nephrol 18, 1754-1764.
    Lange, C., Togel, F., Ittrich, H., Clayton, F., Nolte-Ernsting, C., Zander, A.R., and Westenfelder, C. (2005). Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68, 1613-1617.
    Lazzeri, E., Crescioli, C., Ronconi, E., Mazzinghi, B., Sagrinati, C., Netti, G.S., Angelotti, M.L., Parente, E., Ballerini, L., Cosmi, L., et al. (2007). Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 18, 3128-3138.
    Lemmer, E.R., Shepard, E.G., Blakolmer, K., Kirsch, R.E., and Robson, S.C. (1998). Isolation from human fetal liver of cells co-expressing CD34 haematopoietic stem cell and CAM 5.2 pancytokeratin markers. J Hepatol 29, 450-454.
    Li, L., and Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542-545.
    Lin, F., Cordes, K., Li, L., Hood, L., Couser, W.G., Shankland, S.J., and Igarashi, P. (2003). Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 14, 1188-1199.
    Lin, F., Moran, A., and Igarashi, P. (2005). Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115, 1756-1764.
    Liu, K.D., and Brakeman, P.R. (2008). Renal repair and recovery. Crit Care Med 36, S187-192.
    Maeshima, A. (2007). Label-retaining cells in the kidney: origin of regenerating cells after renal ischemia. Clin Exp Nephrol 11, 269-274.
    Malis, C.D., Leaf, A., Varadarajan, G.S., Newell, J.B., Weber, P.C., Force, T., and Bonventre, J.V. (1991). Effects of dietary omega 3 fatty acids on vascular contractility in preanoxic and postanoxic aortic rings. Circulation 84, 1393-1401.
    Mazzinghi, B., Ronconi, E., Lazzeri, E., Sagrinati, C., Ballerini, L., Angelotti, M.L., Parente, E., Mancina, R., Netti, G.S., Becherucci, F., et al. (2008). Essential but differential role for CXCR4 and CXCR7 in the therapeutic homing of human renal progenitor cells. J Exp Med 205, 479-490.
    Mene, P., Polci, R., and Festuccia, F. (2003). Mechanisms of repair after kidney injury. J Nephrol 16, 186-195.
    Mitalipov, S., and Wolf, D. (2009). Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol 114, 185-199.
    Molitoris, B.A. (1991). Ischemia-induced loss of epithelial polarity: potential role of the actin cytoskeleton. Am J Physiol 260, F769-778.
    Molitoris, B.A., Dahl, R., and Geerdes, A. (1992). Cytoskeleton disruption and apical redistribution of proximal tubule Na(+)-K(+)-ATPase during ischemia. Am J Physiol 263, F488-495.
    Moore, K.A., and Lemischka, I.R. (2006). Stem cells and their niches. Science 311, 1880-1885.
    Morgera, S., Kraft, A.K., Siebert, G., Luft, F.C., and Neumayer, H.H. (2002). Long-term outcomes in acute renal failure patients treated with continuous renal replacement therapies. Am J Kidney Dis 40, 275-279.
    Morgera, S., Schneider, M., and Neumayer, H.H. (2008). Long-term outcomes after acute kidney injury. Crit Care Med 36, S193-197.
    Morigi, M., Imberti, B., Zoja, C., Corna, D., Tomasoni, S., Abbate, M., Rottoli, D., Angioletti, S., Benigni, A., Perico, N., et al. (2004). Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15, 1794-1804.
    Morigi, M., Introna, M., Imberti, B., Corna, D., Abbate, M., Rota, C., Rottoli, D., Benigni, A., Perico, N., Zoja, C., et al. (2008). Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 26, 2075-2082.
    Morrissey, J.J., McCracken, R., Kaneto, H., Vehaskari, M., Montani, D., and Klahr, S. (1994). Location of an inducible nitric oxide synthase mRNA in the normal kidney. Kidney Int 45, 998-1005.
    Nadasdy, T., Laszik, Z., Blick, K.E., Johnson, L.D., and Silva, F.G. (1994). Proliferative activity of intrinsic cell populations in the normal human kidney. J Am Soc Nephrol 4, 2032-2039.
    Noiri, E., Gailit, J., Sheth, D., Magazine, H., Gurrath, M., Muller, G., Kessler, H., and Goligorsky, M.S. (1994). Cyclic RGD peptides ameliorate ischemic acute renal failure in rats. Kidney Int 46, 1050-1058.
    Okuda, T., Tagawa, K., Qi, M.L., Hoshio, M., Ueda, H., Kawano, H., Kanazawa, I., Muramatsu, M., and Okazawa, H. (2004). Oct-3/4 repression accelerates differentiation of neural progenitor cells in vitro and in vivo. Brain Res Mol Brain Res 132, 18-30.
    Oliver, J.A., Barasch, J., Yang, J., Herzlinger, D., and Al-Awqati, Q. (2002). Metanephric mesenchyme contains embryonic renal stem cells. Am J Physiol 283, F799-809.
    Oliver, J.A., Klinakis, A., Cheema, F.H., Friedlander, J., Sampogna, R.V., Martens, T.P., Liu, C., Efstratiadis, A., and Al-Awqati, Q. (2009). Proliferation and migration of label-retaining cells of the kidney papilla. J Am Soc Nephrol 20, 2315-2327.
    Oliver, J.A., Maarouf, O., Cheema, F.H., Martens, T.P., and Al-Awqati, Q. (2004). The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114, 795-804.
    Orlic, D., and Bodine, D.M. (1994). What defines a pluripotent hematopoietic stem cell (PHSC): will the real PHSC please stand up! Blood 84, 3991-3994.
    Peister, A., Mellad, J.A., Larson, B.L., Hall, B.M., Gibson, L.F., and Prockop, D.J. (2004). Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103, 1662-1668.
    Petersen, B.E., Bowen, W.C., Patrene, K.D., Mars, W.M., Sullivan, A.K., Murase, N., Boggs, S.S., Greenberger, J.S., and Goff, J.P. (1999). Bone marrow as a potential source of hepatic oval cells. Science 284, 1168-1170.
    Pittenger, M.F., and Martin, B.J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95, 9-20.
    Plotkin, M.D., and Goligorsky, M.S. (2006). Mesenchymal cells from adult kidney support angiogenesis and differentiate into multiple interstitial cell types including erythropoietin-producing fibroblasts. Am J Physiol 291, F902-912.
    Ponte, A.L., Marais, E., Gallay, N., Langonne, A., Delorme, B., Herault, O., Charbord, P., and Domenech, J. (2007). The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25, 1737-1745.
    Poulsom, R., Forbes, S.J., Hodivala-Dilke, K., Ryan, E., Wyles, S., Navaratnarasah, S., Jeffery, R., Hunt, T., Alison, M., Cook, T., et al. (2001). Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195, 229-235.
    Racusen, L.C., Fivush, B.A., Li, Y.L., Slatnik, I., and Solez, K. (1991). Dissociation of tubular cell detachment and tubular cell death in clinical and experimental "acute tubular necrosis". Lab Invest 64, 546-556.
    Ratajczak, M.Z., Zuba-Surma, E., Kucia, M., Reca, R., Wojakowski, W., and Ratajczak, J. (2006). The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20, 1915-1924.
    Reisner, Y., Kapoor, N., O'Reilly, R.J., and Good, R.A. (1980). Allogeneic bone marrow transplantation using stem cells fractionated by lectins: VI, in vitro analysis of human and monkey bone marrow cells fractionated by sheep red blood cells and soybean agglutinin. Lancet 2, 1320-1324.
    Rojas, M., Xu, J., Woods, C.R., Mora, A.L., Spears, W., Roman, J., and Brigham, K.L. (2005). Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 33, 145-152.
    Safirstein, R., Price, P.M., Saggi, S.J., and Harris, R.C. (1990). Changes in gene expression after temporary renal ischemia. Kidney Int 37, 1515-1521.
    Sagrinati, C., Netti, G.S., Mazzinghi, B., Lazzeri, E., Liotta, F., Frosali, F., Ronconi, E., Meini, C., Gacci, M., Squecco, R., et al. (2006). Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J Am Soc Nephrol 17, 2443-2456.
    Saxen, L., and Sariola, H. (1987). Early organogenesis of the kidney. Pediatr Nephrol 1, 385-392.
    Schiffl, H. (2006). Renal recovery from acute tubular necrosis requiring renal replacement therapy: a prospective study in critically ill patients. Nephrol Dial Transplant 21, 1248-1252.
    Shen, Q., Goderie, S.K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K., and Temple, S. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338-1340.
    Sherwood, R.I., Christensen, J.L., Conboy, I.M., Conboy, M.J., Rando, T.A., Weissman, I.L., and Wagers, A.J. (2004). Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119, 543-554.
    Spangrude, G.J., Heimfeld, S., and Weissman, I.L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science 241, 58-62.
    Spencer, A.J., LeFurgey, A., Ingram, P., and Mandel, L.J. (1991). Elemental microanalysis of organelles in proximal tubules. II. Effects of oxygen deprivation. J Am Soc Nephrol 1, 1321-1333.
    Stemple, D.L., and Anderson, D.J. (1992). Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71, 973-985.
    Sutton, T.A., Mang, H.E., Campos, S.B., Sandoval, R.M., Yoder, M.C., and Molitoris, B.A. (2003). Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol 285, F191-198.
    Tai, M.H., Chang, C.C., Kiupel, M., Webster, J.D., Olson, L.K., and Trosko, J.E. (2005). Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26, 495-502.
    Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
    Takaue, Y., Watanabe, T., Kawano, Y., Koyama, T., Abe, T., Suzue, T., Satoh, J., Shimokawa, T., Ninomiya, T., Kosaka, M., et al. (1989). Isolation and storage of peripheral blood hematopoietic stem cells for autotransplantation into children with cancer. Blood 74, 1245-1251.
    Terada, N., Hamazaki, T., Oka, M., Hoki, M., Mastalerz, D.M., Nakano, Y., Meyer, E.M., Morel, L., Petersen, B.E., and Scott, E.W. (2002). Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542-545.
    Timpl, R. (1989). Structure and biological activity of basement membrane proteins. Eur J Biochem 180, 487-502.
    Togel, F., Cohen, A., Zhang, P., Yang, Y., Hu, Z., and Westenfelder, C. (2009). Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem Cells Dev 18, 475-485.
    Togel, F., Hu, Z., Weiss, K., Isaac, J., Lange, C., and Westenfelder, C. (2005). Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol 289, F31-42.
    Togel, F., Weiss, K., Yang, Y., Hu, Z., Zhang, P., and Westenfelder, C. (2007). Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol 292, F1626-1635.
    Toma, J.G., Akhavan, M., Fernandes, K.J., Barnabe-Heider, F., Sadikot, A., Kaplan, D.R., and Miller, F.D. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3, 778-784.
    Uccelli, A., Pistoia, V., and Moretta, L. (2007). Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 28, 219-226.
    Ulloa-Montoya, F., Verfaillie, C.M., and Hu, W.S. (2005). Culture systems for pluripotent stem cells. J Biosci Bioeng 100, 12-27.
    Vicente-Manzanares, M., Ma, X., Adelstein, R.S., and Horwitz, A.R. (2009). Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10, 778-790.
    Vigneau, C., Polgar, K., Striker, G., Elliott, J., Hyink, D., Weber, O., Fehling, H.J., Keller, G., Burrow, C., and Wilson, P. (2007). Mouse embryonic stem cell-derived embryoid bodies generate progenitors that integrate long term into renal proximal tubules in vivo. J Am Soc Nephrol 18, 1709-1720.
    Wahab, N.A., and Mason, R.M. (2006). A critical look at growth factors and epithelial-to-mesenchymal transition in the adult kidney. Interrelationships between growth factors that regulate EMT in the adult kidney. Nephron Exp Nephrol 104, e129-134.
    Wen, C.P., Cheng, T.Y., Tsai, M.K., Chang, Y.C., Chan, H.T., Tsai, S.P., Chiang, P.H., Hsu, C.C., Sung, P.K., Hsu, Y.H., et al. (2008). All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet 371, 2173-2182.
    Witzgall, R., Brown, D., Schwarz, C., and Bonventre, J.V. (1994). Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 93, 2175-2188.
    Wright, L.S., Prowse, K.R., Wallace, K., Linskens, M.H., and Svendsen, C.N. (2006). Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro. Exp Cell Res 312, 2107-2120.
    Wu, D.C., Boyd, A.S., and Wood, K.J. (2007a). Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Front Biosci 12, 4525-4535.
    Wu, Y., Chen, L., Scott, P.G., and Tredget, E.E. (2007b). Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25, 2648-2659.
    Wurmser, A.E., Palmer, T.D., and Gage, F.H. (2004). Neuroscience. Cellular interactions in the stem cell niche. Science 304, 1253-1255.
    Yamamoto, M., Cui, L., Johkura, K., Asanuma, K., Okouchi, Y., Ogiwara, N., and Sasaki, K. (2006). Branching ducts similar to mesonephric ducts or ureteric buds in teratomas originating from mouse embryonic stem cells. Am J Physiol 290, F52-60.
    Ying, Q.L., Nichols, J., Evans, E.P., and Smith, A.G. (2002). Changing potency by spontaneous fusion. Nature 416, 545-548.
    Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920.
    Yurchenco, P.D. (1990). Assembly of basement membranes. Ann N Y Acad Sci 580, 195-213.
    Zeisberg, M., Shah, A.A., and Kalluri, R. (2005). Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J Biol Chem 280, 8094-8100.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE